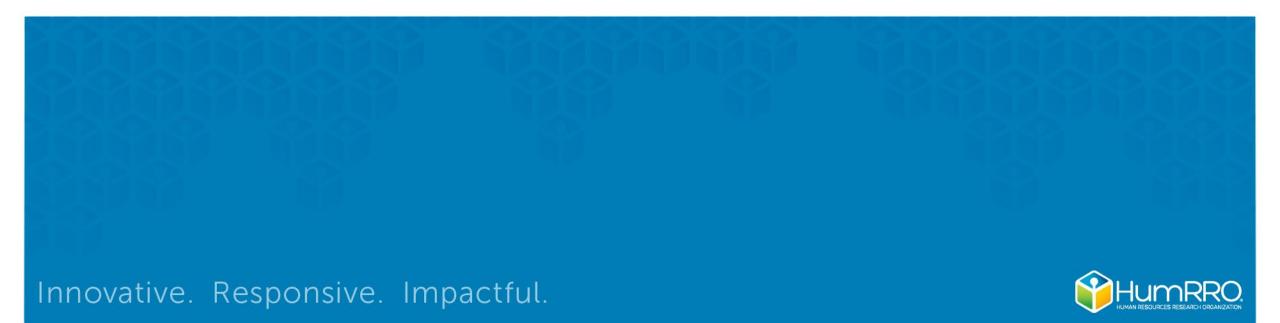


CAT-ASVAB Pool + P&P- ASVAB Form Development

Presenter: Matthew Trippe, HumRRO

December 15, 2022


HumRRO Headquarters: 66 Canal Center Plaza, Suite 700, Alexandria, VA 22314-1578 | Phone: 703.549.3611 | www.humrro.org

Overview

- Development of CAT-ASVAB Item Pools
 - Process overview
 - Summary/examples of key processes
 - Current status
 - Next steps
- Development of P&P-ASVAB Forms
 - Process overview
 - Summary/examples of key processes
 - Summary of technical challenges & solutions
 - Auto & Shop (AS)
 - Paragraph Comprehension (PC)
 - Current status
 - Next steps

CAT-ASVAB Pool (Form) Development

Process Overview

Tryout Item Data Collection

	Annual Pool Development Targets*				
min der	Subtest	Pools	Notes		

Order	Subtest	Pools	Notes
1	General Science (GS)	4	Non-AFQT, moderate threa of compromise
2	Arithmetic Reasoning (AR)	4	AFQT, moderate threat of compromise
3	Word Knowledge (WK)	8	AFQT, greatest threat of compromise
4	Paragraph Comprehension (PC)	4	AFQT, moderate threat of compromise
5	Math Knowledge (MK)	4	AFQT, moderate threat of compromise
6	Electronics Information (EI)	2	
7	Automotive Information (AI)	2	
8	Shop Information (SI)	2	Non-AFQT, lower threat of compromise
9	Mechanical Comprehension (MC)	2	
10	Assembling Objects (AO)	2	

Current Tryout Seeding Design

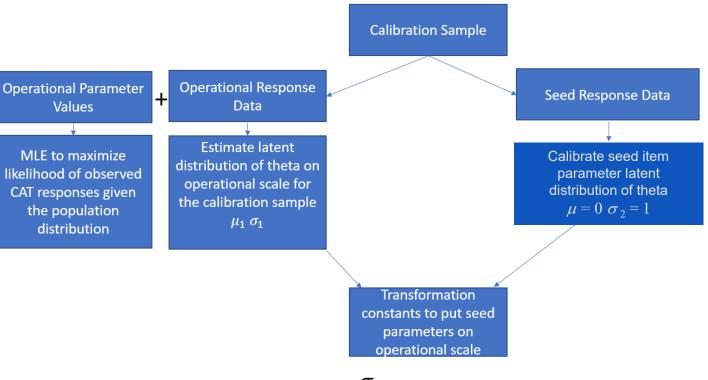
Group	Seed Sequence	Admin Proportion
1	15 GS, 15 AR	0.29
2	15 WK, 15 PC	0.29
3	15 WK, 15 MK, 15 EI, 15 AI	0.14
4	15 WK, 15 MK, 15 AP	0.14
5	15 SI, 15 MC, 15 AC	0.14
AP = AO AC = AO	Puzzles Connections	

*These original targets have been modified per slide 6

5

Tryout Item Data Collection (cont.)

- Tryout items are developed in "series" of 100 items per test
- Convention of 200 tryout items required to develop one CAT pool
- Tryout series are administered in "seed versions"
 - Current seed version administration configuration:
 - AI, AO, EI, SI, MC : Two series or 200 items
 - AR, GS, MK, PC: Four series or 400 items
 - WK: eight series or 800 items
- Original annual pool development targets (slide 5) are proving to be too aggressive to support from several perspectives
 - Data collection
 - Psychometric team demands
 - Information Technology team demands
- We are in the process of revising item development and seeding design to be compatible with a "flat" target of 4–5 CAT pools every two years
 - CAT Pools 5–9 operational: 2008–2022
 - CAT Pools 11–15 operational: expected 2023–2025

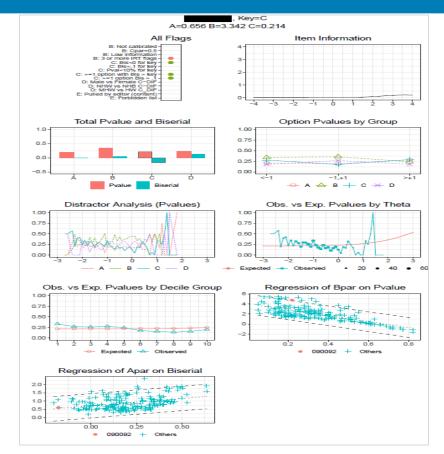

Item Parameter Calibration

- CAT-ASVAB based on Three-Parameter Logistic model (3PL)
- DTAC simulation studies of calibration process suggest item-level sample size ≥ 1,000 is desirable for optimal parameter recovery
 - Target item-level sample size of 1,200
 - Accounts for some data loss associated with data cleaning (e.g., removal of corrupt or invalid records)
 - Achieving target depends on (variable) testing volumes, but generally requires ~8 months of data collection
- Each test calibrated separately using BILOG-MG
- DTAC simulations find that parameter recovery is improved as the number of seed items administered to each examinee increases
 - Parameter recovery found to be relatively poor when 10 or fewer seed items administered
 - Each examinee responds to 15 randomly administered tryout items per test according to seed design (slide 5)
- Tryout items calibrated in seed versions
 - 200, 400, or 800 items per calibration
- Sparse response data matrix
 - AI, AO, EI, SI, MC: ~16,000 examinees
 - AR, GS, MK, PC : ~32,000 examinees
 - WK: ~64,000 examinees

Item Parameter Rescaling

- Calibrate <u>seed</u> parameter values using seed response data. Latent distribution of theta is fixed to BILOG defaults (0,1)
- Use <u>operational</u> responses from calibration sample + operational parameter values to estimate latent distribution of theta on the operational scale for the calibration sample
- Compute transformation constants to put seed parameters on the operational scale

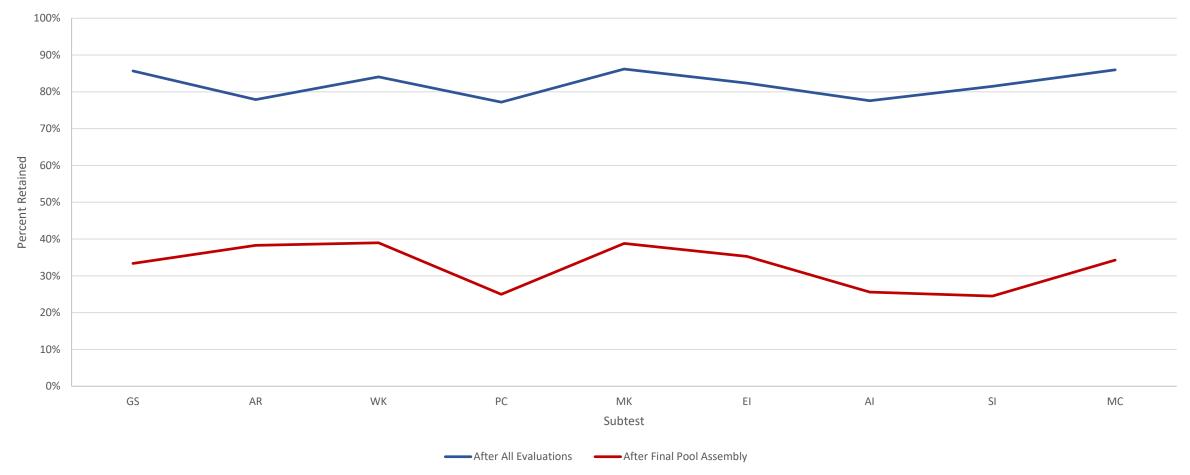
$$A = \frac{\sigma_1}{\sigma_2} \quad B = \mu_1 - (A \times \mu_2)$$



Empirical Item Screening

Psychometric Quality Analyses (per item)

- Item information
- Item-model fit
 - Eight fit indices
- Distractor analysis
 - Content review
- Differential item functioning (DIF)
 - Non-Hispanic White vs. Hispanic White
 - Non-Hispanic White vs. Non-Hispanic Black
 - Male vs. Female
 - See 12JUL22 MAPWG briefing for details
- Screening Rubric
 - Many items automatically eligible for operational status
 - Some items automatically ineligible for operational status
 - Several require psychometric/content SME to determine eligibility


"One Pager" Visual Summary (per item)

Empirical Item Screening (cont.)

Percentage of Items Retained During Forms 11–15 Development

Innovative. Responsive. Impactful.

Item Enemy Analysis

Math Knowledge (MK) & Mechanical Comprehension (MC)

- Pommerich & Segall (2008) evaluated local dependence (LD) in CAT
 - LD in item parameters has minimal effect on precision
 - LD in item responses has substantial effect on precision
- Mitigating LD requires identification of item enemy groups
- Items likely to trigger LD if administered to the same person
 - Two or more items that measure similar or highly related content
- Before assembling forms 5–9, DTAC developed a content framework for identifying enemy groups for tests where LD is of particular concern
 - MC: 95 content areas; 111 content areas as of 2022
 - MK: 155 content areas; 212 content areas as of 2022
- CAT-ASVAB ensures an applicant is administered no more than one item in an enemy group

All Other Tests

- No direct empirical evidence of local dependence affecting item responses in other tests, but we know some items assess similar content
- Existing enemy documentation is limited
 - Item developers cannot know which series will be considered together for pool assembly in the future
 - Definition of enemy is not necessarily based on local dependence
- Evaluating the degree of content similarity among a matrix of >1,000 items per test is a challenging task
- HumRRO has developed methods to optimize human/SME labor & Machine Learning/Natural Language Processing roles

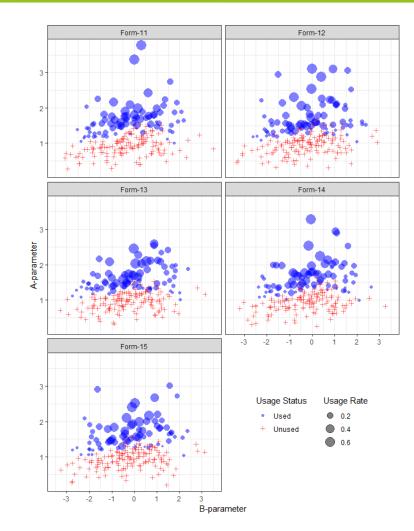
Item Enemy Analysis (cont.)

Process for WK

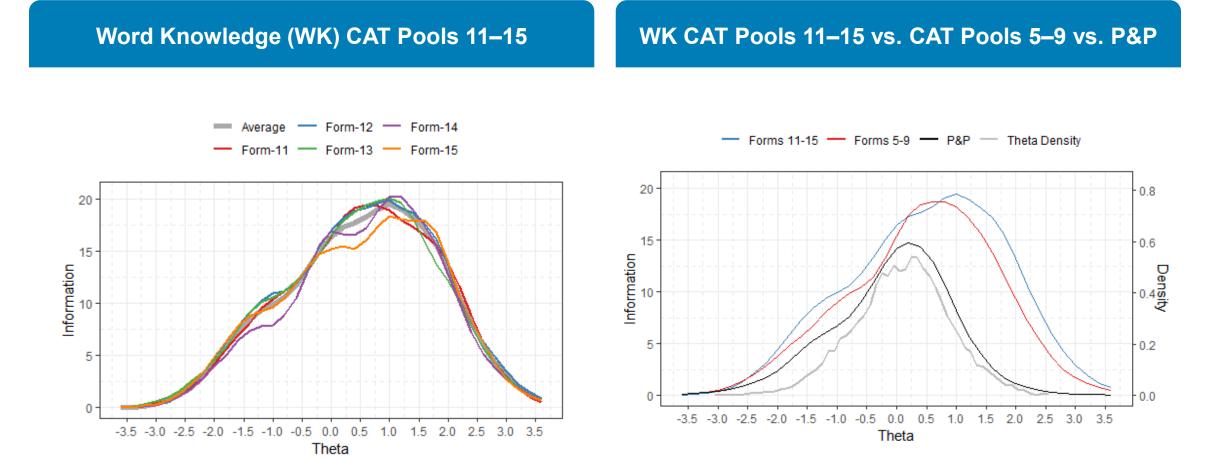
- Extract the focal word from item stems and the corresponding keyed responses
- Match focal/keyed words from items to a taxonomy of words that relates word forms to root words
 - E.g., in this taxonomy, "deceive," "deceit," and "deception" all have the same root word
- Compare focal/keyed root words across items and identify item pairs that assess knowledge of the same word(s)
- Compile pair-wise relations and construct discrete enemy groups

Process for AI, AR, EI, GS, PC, and SI

- Compute similarity among item pairs based on quantitative embeddings of item text
- Establish a similarity threshold for potential enemies via subtest-specific bookmarking activity using local dependence focused operational definition of "enemy" specific to each test
- Identify the item pairs above the threshold and review them to eliminate false positives
- Compile pair-wise relations and construct discrete enemy groups


CAT-ASVAB Pool Assembly

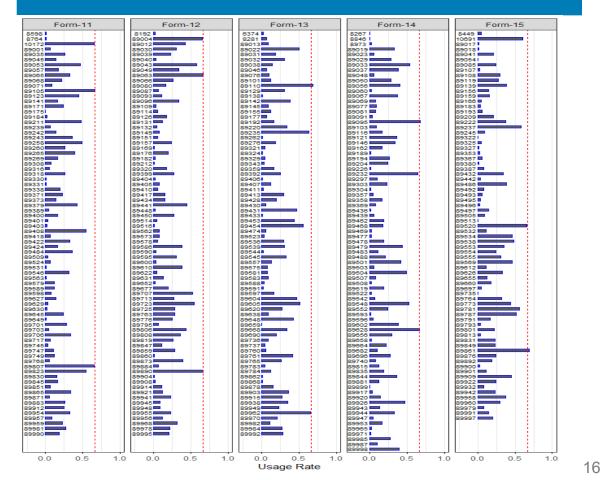
- CAT Pools
 - CAT administration is based on pools from which a *potentially* unique set of items is administered to each examinee
 - Pools need to contain items from the full range of content and difficulty
 - Pools need to contain sufficient information/score precision across the full range of ability
- Pool assembly goals
 - For each test, assign each item to <u>one</u> of five pools (e.g., 11, 12, 13, 14, 15)
 - Maximize conditional precision levels of each pool
 - Constrain conditional precision levels to be comparable across pools
 - Account for enemy items—distribute them evenly across pools
 - Account for content taxonomies where applicable (GS, AO)


CAT Pool Assembly Example: WK Item Assignment

- Divide eligible items (~1000) into five candidate pools with ~200 items
 - Items appear in only one pool
 - Total information approx. equal across candidate pools
 - Items from the same enemy group constrained to be distributed evenly across candidate pools
- Estimate exposure control parameters via simulation (see slide 16)
- Compute score information functions (SIF) for each candidate pool via large (n>60k) CAT simulation
 - Administer most informative item for given simulee while controlling exposure
 - Items administered at least once assigned to final pool
- "Greedy" algorithm that assigns only the most informative items to pools
- Many eligible items are not assigned to a pool (see slide 10)
 - Attempt to re-use in future pool assembly

CAT Pool Assembly Example: WK Score Information

Innovative. Responsive. Impactful.

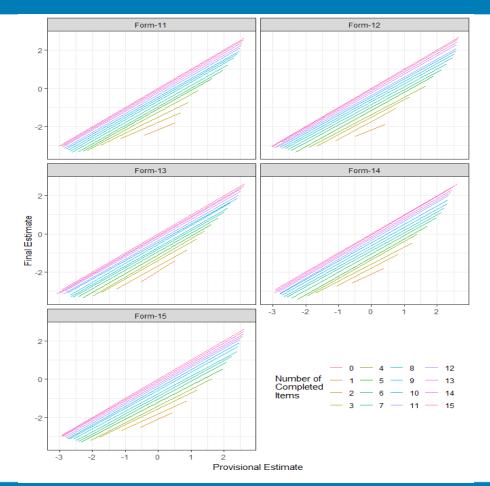


Additional CAT Parameters: Exposure Control

Exposure Control

- Sympson-Hetter exposure control applied to item selection
 - r = 2/3, max exposure
 - P(S) = probability of selection
 - *P*(*S*) = *NS/NE*
 - P(A) = probability of administration
 - *P*(*A*) = *NA*/*NE*
 - NE = total examinees
- Multi-step simulation:
 - K_i = 1, initial value for all items
- Iterate until max $P(A) \sim r$
 - Select most informative item
 - Generate random *x* from uniform distribution (0,1)
 - If $x \leq K_i$, then administer item
 - If P(S) > r, then $K_i = r/P(S)$
 - If $P(S) \le r$, then $K_i = 1.0$
- Overall exposure rate of 1/6 in Enlistment Testing Program (ETP)
 - Four operational pools
 - 2/3 (rate) x 1/4 (pools) = 1/6

Usage Rate Example: WK



Additional CAT Parameters: Penalty Parameters

Penalty for Incomplete CAT

- CAT-ASVAB scores (Bayes Modal Estimator) contain bias that draws estimate toward mean of prior
- Bias is larger in shorter tests like CAT-ASVAB
- Low-ability examinees could potentially exploit this by answering the minimum number of questions allowed
- Simulation-based penalty procedure assigns a final score that is equivalent to the expected score obtained by random guessing on the unanswered questions
- Penalty functions are regression equations

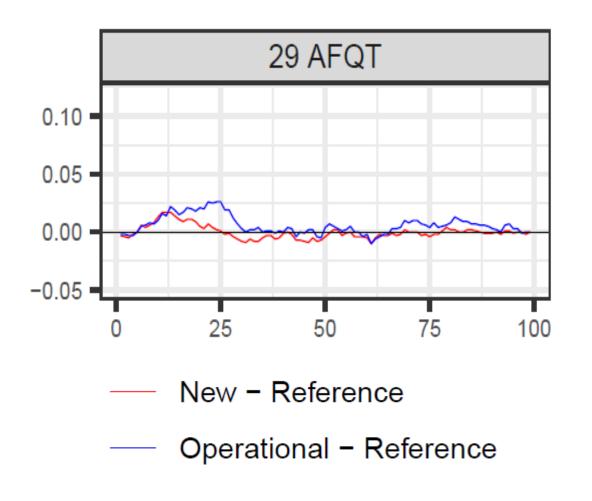
Penalty Function Example: WK

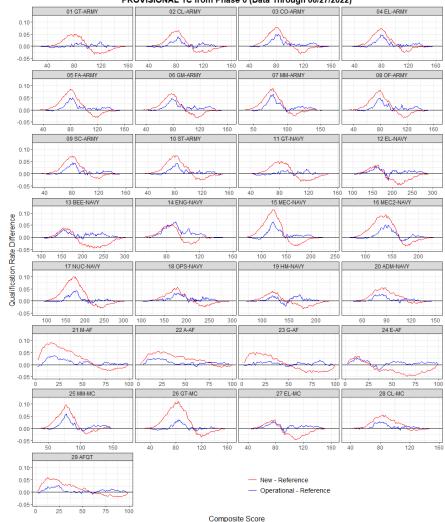
Innovative. Responsive. Impactful.

CAT-ASVAB Equating Study

Equating Study Design

- Equating is implemented in three phases of operational administration of new pools to military applicants
- Each phase includes progressively larger sample size
- Intent of phased design is to maximize accuracy of reported operational scores
- Random groups design
- Each applicant is assigned to a single pool with 1/7 assignment probability
 - The reference form 4, administered only during equating studies
 - An operational form
 - A new form (11–15)
- Evaluate differences in qualification composite cumulative distribution functions (CDFs) between reference form 4 and new pools


Three Phases


Form #	Description	Assignment Probability	Phase I Target n 10JUN22	Phase II Target n 27JUN22	Phase III Target n ~DEC22
4	Reference	1/7	500	1,500	10,000
5	Operational	1/7	500	1,500	10,000
11	New	1/7	500	1,500	10,000
12	New	1/7	500	1,500	10,000
13	New	1/7	500	1,500	10,000
14	New	1/7	500	1,500	10,000
15	New	1/7	500	1,500	10,000
Total		1	3,500	10,500	70,000

18

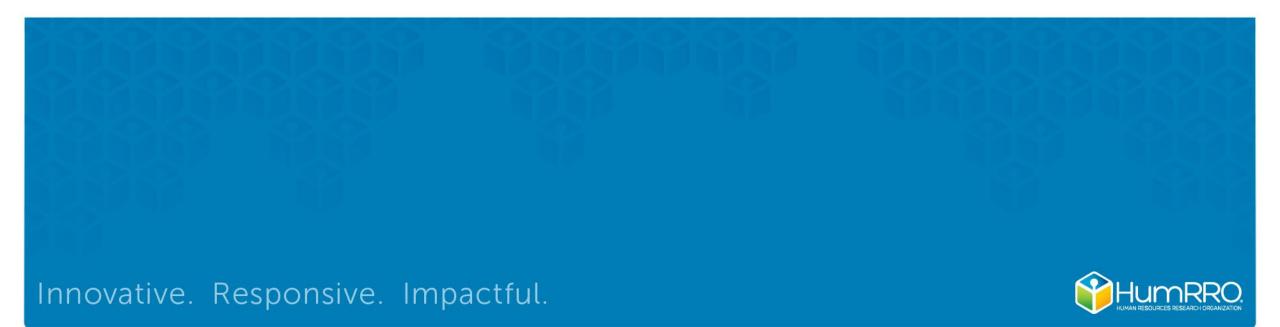
CAT-ASVAB Equating: Qualification Rate Differences

QR Differences Comparing New and Operational Forms vs Reference Form PROVISIONAL TC from Phase 0 (Data Through 06/27/2022)

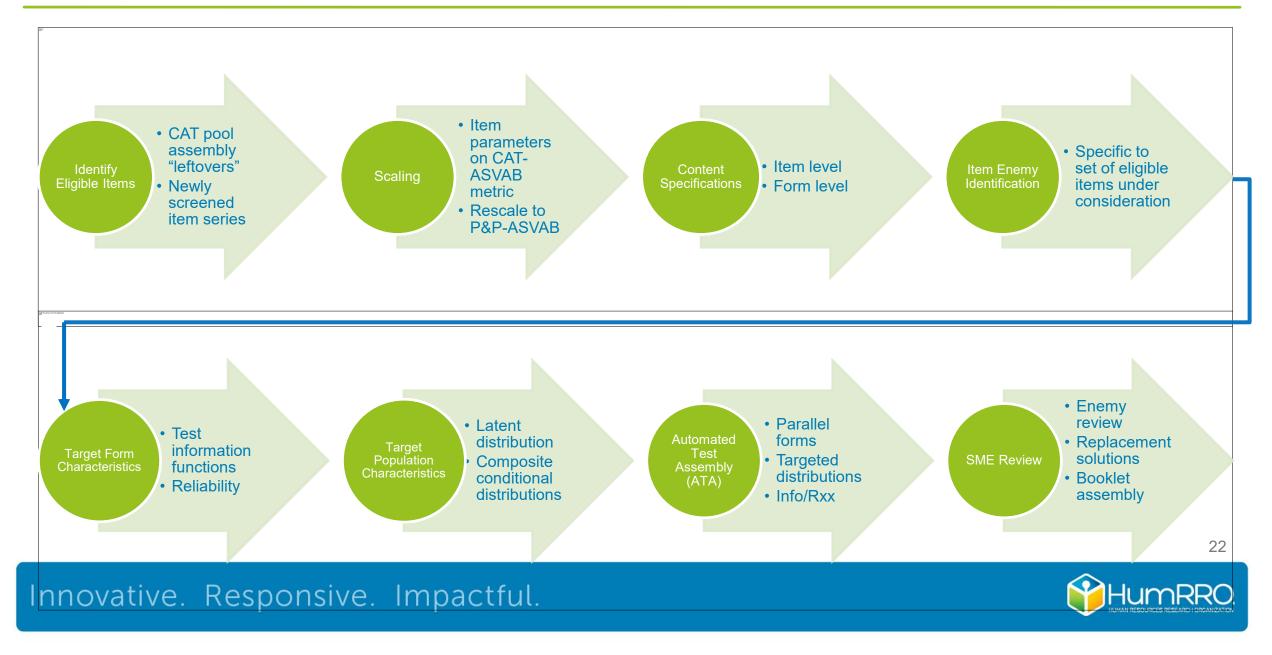
19

CAT-ASVAB Pool Development Status

Current Status


- CAT-ASVAB Pools 11–15
 - Administered to applicants in May 2022 as part of equating study
 - Equating phases 1 & 2 complete
 - Phase 3 target sample size projected to be achieved in mid-December 2022
- CAT-ASVAB Pools 16-20
 - Developed modern computing workflow for pool assembly
 - Run in parallel with original Fortran-based processes
 - Series processed since assembling 11–15
 - WK: 28 series
 - AFQT + GS: 12 series
 - Technical: 4 series

Next Steps


- Complete phase 3 equating for 11–15
 - Final transformation constants
 - Thorough evaluation/analysis
- Begin developing CAT Pools 16–20
 - Use <u>eligible</u> items from:
 - New series processed since 11–15
 - Items not assigned to a pool during 11–15 assembly
 - Items not assigned to P&P-ASVAB

P&P-ASVAB Form Development

Process Overview

P&P-ASVAB Form Development Goals

- Develop new P&P-ASVAB forms to replace existing forms used in the Career Exploration (CEP) and Enlistment Testing Program (ETP)
- CEP has four forms (23A, 23B, 24A, 24B), where A and B versions include the same items reordered
- ETP has four forms (25A, 25B, 26A, 26B), where:
 - A and B versions contain unique items for AFQT tests
 - A and B versions include the same items reordered for non-AFQT tests
- Development of new P&P-ASVAB forms for CEP & ETP has largely been discontinued
- One last wave of development

Eligible Items & Scaling

- Item development is focused on CAT-ASVAB
 - P&P-ASVAB development draws from same resources of eligible items
- Eligible items include:
 - Eligible for CAT-ASVAB Pools 5–9 but not assigned
 - Eligible for CAT-ASVAB Pools 11–15 but not assigned
 - Eligible items from item series processed since development of CAT-ASVAB Pools 11–15
- P&P-ASVAB and CAT-ASVAB are on separate scales
 - DTAC previously conducted "anchoring" study to link P&P-ASVAB scale to CAT-ASVAB scale
 - Latent mean and standard deviations from that study were used to apply linking constants in reverse to place item parameters scaled to CAT-ASVAB (per slide 8) on P&P-ASVAB scale

•
$$A = SD_{CAT}/SD_{PP}$$
; $B = MEAN_{CAT} - MEAN_{PP} * A$

•
$$a_{PP} = a_{CAT} * A$$
; $b_{PP} = b_{CAT}/A - B/A$

Content Specifications

Form-Level Blueprint

- Each P&P-ASVAB test has a content blueprint specifying:
 - Number of items
 - Sub-content distribution
 - E.g., AR: whole numbers, rational numbers
 - E.g., GS: life science, physical science

• CEP and ETP blueprints are the same

Test Length				
	C	AT-ASVAB	P&P-ASVAB	
	Items	Minutes*	Items	Minutes
GS	15	12/25	25	11
AR	15	55/113	30	36
WK	15	9/18	35	11
PC	10	27/75	15	13
MK	15	31/65	25	24
EI	15	10/21	20	9
AI	10	7/18	05**	11**
SI	10	7/17	25**	
MC	15	22/42	25	19
AO	15	18/38	25	15

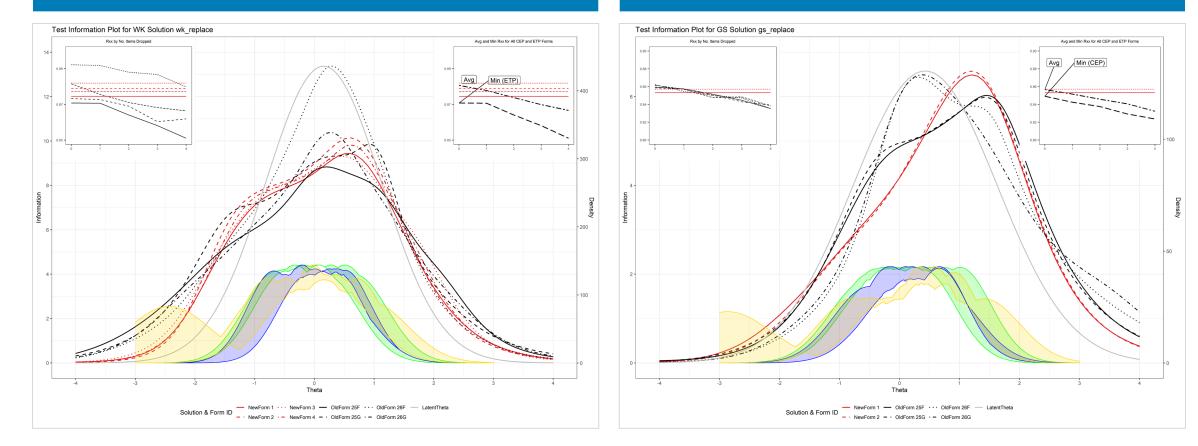
*Without/With tryout items (see slide 5 for design)

**Auto-Shop (AS) = 13 AI + 12 SI items

Limits are set so that at least 99% of examinees can finish in the allotted time

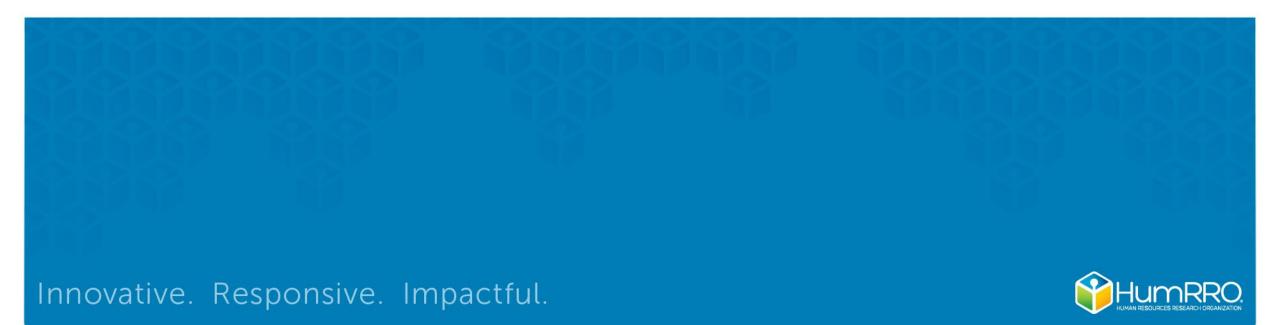
Innovative. Responsive. Impactful.

Automated Test Assembly


- Use Automated Test Assembly (ATA) optimization model to develop forms parallel to each other and "target" CEP/ETP forms
- Model constraints include
 - Number of items
 - Content blueprint
 - Item key "balance"
 - Item enemies
 - Maximizing the test information functions (TIFs)
 - Minimizing equally weighted sum of the distance between TIFs and test characteristic curves (TCCs) of the forms
- Quantitative evaluation criteria include
 - Similarity to "target" CEP/ETP form TIF/Rxx
 - Alignment with latent distribution
 - Alignment with latent distribution conditional on aptitude area composites
- Final SME review
 - Review assembled form content for evidence of
 - Enemies
 - Obsolete content
 - "Sensitive" content

Automated Test Assembly (cont.)

Example: WK


Example: GS

Innovative. Responsive. Impactful.

P&P-ASVAB Technical Challenges & Solutions

P&P-ASVAB Technical Challenges

Auto & Shop (AS)

- When P&P-ASVAB was originally developed, Auto
 & Shop (AS) was calibrated/scaled as one test
- CAT-ASVAB items are calibrated/scaled as separate Automotive Information (AI) and Shop Information (SI) tests, which are subsequently combined as a composite
- P&P-ASVAB must include AS-scaled item parameters to be compatible with MEPCOM infrastructure
- Rescaling options include:
 - Special data collection to administer new AI & SI items
 + backup/reserve items + original AS items, followed
 by calibration and final form assembly
 - Impractical and risky
 - Modified Stocking-Lord Procedure (MSLP)

Paragraph Comprehension (PC)

- When P&P-ASVAB was originally developed, Paragraph Comprehension (PC) items were developed with 5 questions per paragraph stimulus
- CAT-ASVAB items are developed with one question per paragraph stimulus
- Maintaining a fifteen-item PC test would result in increasing the number of paragraphs from <u>three</u> to <u>fifteen</u>
- Twelve additional paragraph stimuli will dramatically increase word count (~125%) and thus increase the time limit
- Testing time is extremely valuable, and considerably increasing the time limit will be problematic for CEP and ETP

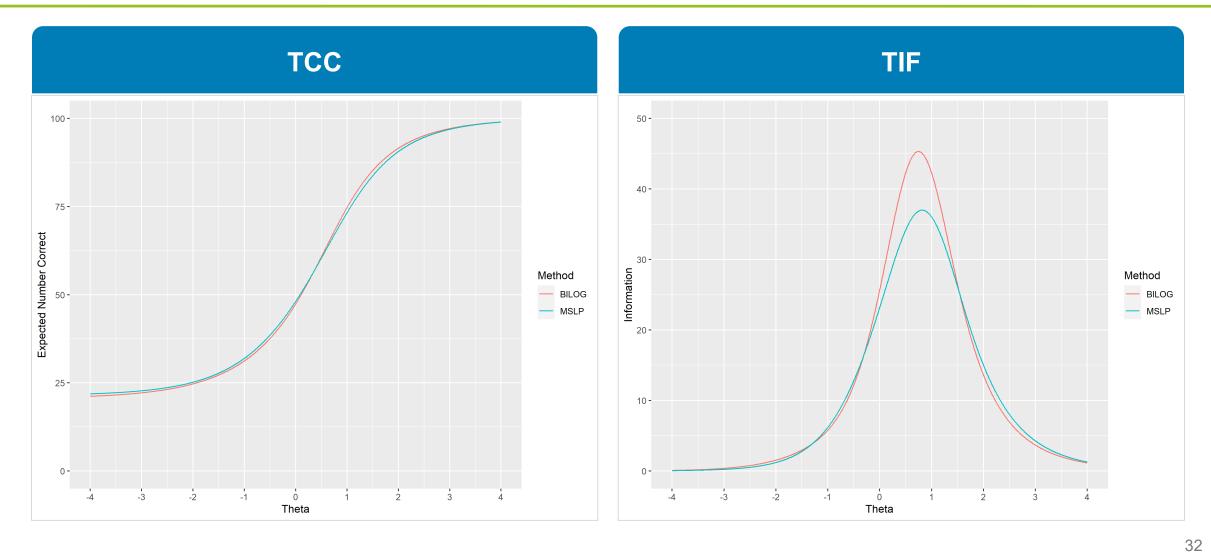
Approach

- Modified Stocking-Lord Procedure (MSLP) for two tests/scales transformed to a common scale
- Iteratively trying out sets of transformation constants (A [scale] and B [location] constants) and searching for the set that best minimizes our objective function
 - AI and SI each has a set of constants that are optimized simultaneously
- Objective function is the sum of squared differences between:
 - Expected number-correct scores based on (a) sets of parameters on the AI and SI scales and (b) a simulated distribution of truescore AI and SI thetas; and
 - Expected number-correct scores based on (a) a set of parameters that have been rescaled using provisional constants and (b) the average of the true-score AI and SI thetas (i.e., true-score AS thetas)

Key Idea: The typical Stocking-Lord Procedure links different sets of item parameters (for a common set of anchor items) with the latent distribution held constant. We can extend this logic to link different latent distributions by rescaling a single set of item parameters.

P&P-ASVAB Technical Solutions: AS (cont.)

Evaluation


- Compared MSLP to item parameters estimated by calibrating AI and SI items together in BILOG-MG*
 - **Simulation 1:** Large-*N* single-form proof of concept
 - Purpose: Determine if the scaling procedure works as expected under ideal conditions with ample data
 - Simulated 50 AI items, 50 SI items, and 10k "simulees" (fixed form; no seeding or randomized administration)
 - Calibrated AI and SI separately with BILOG-MG, then applied MSLP
 - Calibrated AI and SI together with BILOG-MG
 - Simulation 2: 100 forms assembled from items calibrated using a joint AI+SI seeding design
 - <u>Purpose</u>: Determine if the scaling procedure works as expected with 25-item forms
 - Simulated 200 AI items, 200 SI items, and 16k simulees (15 random items per subtest per simulee → ~1.2k simulees per item)
 - Calibrated AI and SI separately with BILOG-MG, then randomly assigned 25 items (13 AI + 12 SI) to forms and applied MSLP
 - Calibrated AI and SI together with BILOG-MG, then matched AS-scaled parameters with the assembled forms
- Consistent results in both simulations
 - Very close correspondence between test characteristic curves (TCCs) for MSLP- and BILOG-scaled parameters
 - Slightly lower test information functions (TIFs) for MSLP, but BILOG-based TIFs are likely inflated due to violating assumption of unidimensionality

*BILOG-MG calibration includes DTAC's established parameter-rescaling process

Innovative. Responsive. Impactful.

P&P-ASVAB Technical Solutions: AS (Simulation 1)

P&P-ASVAB Technical Solutions: AS (Simulation 2)

Innovative. Responsive. Impactful.

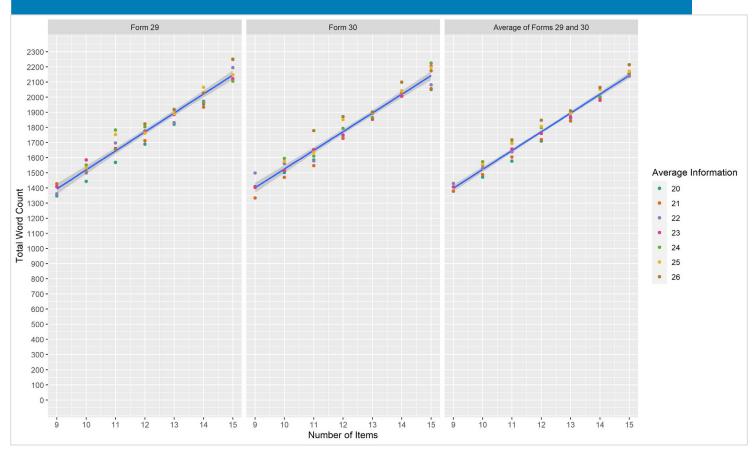
P&P-ASVAB Technical Solutions: PC

Solution

- Modify automated test assembly (ATA) optimization algorithm
- Existing constraints
 - Content blueprint
 - Item key "balance"
 - Item enemies
 - Maximize the test information functions (TIFs)
 - Minimize equally weighted sum of the distance between TIFs and test characteristic curves (TCCs) of the forms
- New Constraint
 - Minimize projected response time
- Variable
 - Number of items (9–15)

Summary Findings

- Ten-item solution is optimal for
 - Minimizing response time while
 - Minimizing loss of test-level reliability and
 - Maintaining composite reliability
- The current P&P-ASVAB PC time limit is 13
 minutes
 - Unlike CAT-ASVAB where time limit is imposed on the individual, this is a test session time limit that applies to all test takers in a proctored environment
- DTAC will provide a recommended solution at an upcoming MAPWG when the details are finalized

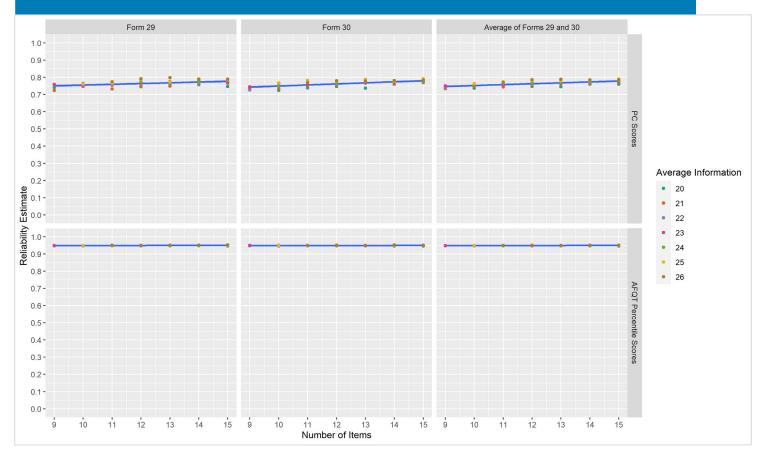


P&P-ASVAB Technical Solutions: PC (cont.)

PC

- There is an obvious/strong relationship between number of items and word count
- More items = more words = longer testing time
- 15-item solution projected time limits
 > 20 minutes, nearly doubling current time limit of 13 minutes, which is prohibitive

Number of PC Items vs. Total Word Count



P&P-ASVAB Technical Solutions: PC (cont.)

PC

- There is a much weaker relationship between number of items and
 - reliability of PC scores
 - reliability of AFQT percentile scores
- 10-item solution represents optimal compromise between Rxx and projected testing time
- DTAC will prepare recommendation based on comprehensive research

Number of PC Items vs. Test-Retest Rxx

P&P-ASVAB Form Development Status

Current Status

- Career Exploration Program and Enlistment Testing Program forms
 - All solutions <u>except</u> PC are complete, QC'd, and ready for delivery to DTAC
 - Final AS solutions mostly unaffected by scaling decision, but experimenting with some "what if" scenarios regarding MSLP order of operations
 - ETP MK solution is ready for delivery, but another "what if" analysis underway as we wait for PC and AS solutions to be fully resolved and implemented

Next Steps

- Finalize PC under "unified" approach
 - Develop 6 parallel PC forms (2 CEP + 4 ETP) using latest optimization algorithm
- Finalize AS scaling decision
 - Heavily favoring MSLP approach over additional data collection
- Summarize research findings and present recommendation to MAPWG
- Finalize all P&P form deliverables
 - CAT-ASVAB Pools 16–20 eligible items become known
- Return full focus of project team to CAT-ASVAB pool development

DAC Guidance & Feedback

P&P-ASVAB Form Development

- Process was created for this last wave of development
- No intention to repeat the process in the future
- Comment or concerns over solutions to technical challenges faced with AS and PC?
- Questions or concerns over other aspects of this process?
- Other recommendations, observations, or advice?

HumRRO Project Team

- Maura Burke
- Jeff Dahlke
- Ted Diaz
- Olga Golovkina
- Ki Ho Kim
- Matthew Reeder
- Stephen Robertson
- Matthew Trippe
- Liz Waterbury

