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Chapter 3: Differential Prediction Analysis Methodology 
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As we noted in Chapter 1, there are well-established practices for evaluating differential 
prediction; namely, using the Cleary framework for making contrasts among regression models 
and, more recently, computing effect sizes to characterize the magnitudes of differences in 
prediction. However, although these general analysis methodologies have been accepted within 
the I-O Psychology profession (SIOP, 2018), methodological challenges related to selection 
artifacts—commonly known as range restriction—remained largely unresolved. Selection 
artifacts occur when an observed sample is a non-random subset of a population, such that the 
systematic way in which the sample was selected limits the extent to which statistical results 
estimated from the sample accurately characterize relations among variables in the population. 

In this research, we augmented the traditional Cleary framework’s procedures to estimate 
models that account for selection artifacts and produce regression coefficients that more 
accurately characterize subgroup relations between AFQT scores and job-relevant criteria in the 
unrestricted applicant population. In this chapter, we describe our augmentations to the Cleary 
framework and summarize the methodology we used in our subsequent analyses. 

Accounting for the Effects of Selection Artifacts on Differential Prediction Analyses 

When a sample has been systematically selected in a way that makes it unrepresentative of its 
population, statistics computed using data from that sample will not generalize to the population 
of interest unless one takes steps to account for the ways in which the sample is 
unrepresentative. For example, when an organization conducts a study examining the criterion-
related validity of scores from an assessment, analysts only have access to job performance 
data from incumbent employees; they have no performance data from applicants who were 
rejected during the selection process. If the organization fails to account for the ways in which 
their incumbent sample differs from the complete unrestricted applicant pool (namely, having 
less variance in predictor scores and having higher mean predictor scores than is typical of 
applicants), their incumbent data will give a misleading idea about the predictive value of their 
assessment. However, if they take advantage of tools and techniques to correct for this 
selection artifact (e.g., by applying range-restriction corrections or using modern missing data 
procedures, such as multiple imputation [MI] or full-information maximum likelihood [FIML] 
estimation), the organization can get a much better, more generalizable estimate of validity. 

We considered a variety of ways to account for the known selection artifacts present in the 
criterion data we obtained from the Services. We explored options for using MI and FIML to 
account for missing criterion scores but determined that both methods posed limitations for the 
objectives of the present research. We ruled out FIML as an approach because, while FIML is 
highly effective at estimating models from data that exhibit missingness, it is not currently well-
suited to evaluating differences among such models because the degrees of freedom for model 
contrasts are not readily available. We also ruled out MI because, although it would avoid the 
degrees-of-freedom problem we encountered with FIML, our experimentation with that method 
suggested it did not perform well in differential prediction analyses that exhibited the amounts of 
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missingness we anticipated in data from the Services. The challenges we faced when using MI 
were driven by the extremely high rates of missing data when we tried to use the applicant 
population to stabilize statistical estimates for individual occupations. Rather than stabilizing our 
estimates, MI had the opposite effect and made it likely we would erroneously detect differences 
between subgroups’ regression lines.  

Instead of using modern missing data methods such as FIML and MI, we relied on foundational 
principles of regression to account for selection artifacts. One of the interesting and useful 
characteristics of regression models fit using maximum-likelihood estimation is that a model’s 
coefficients will not be biased by selection artifacts if all the variables involved in the selection 
process are included in the model. This property is known as invariance of coefficients under 
selection (Mulaik, 2009; pp. 408–414), and it is the basis for all range-restriction-correction 
formulas that researchers use to compute unrestricted estimates of correlations and Cohen’s d 
values (e.g., Aitken, 1935; Lawley, 1944; Pearson, 1903; Thorndike, 1961; Wiernik & Dahlke, 
2020). 

Below, we offer a simple example illustrating the principles that underly our approach to 
controlling for selection artifacts in our differential prediction analyses.  

Example Demonstrating the Principles Behind Our Analyses 

As an example of our approach to controlling for selection artifacts, consider a case in which a 
researcher has a dataset containing a criterion variable called Y and two predictor variables 
called X and Z, and the researcher is primarily interested in the relation between X and Y. 
However, the researcher has incomplete observations for Y because data were only recorded 
for Y when cases had scores on Z that were above the mean, as might happen if Y were a job 
performance variable and if Z were used to make hiring decisions in a top-down selection 
system. Descriptive statistics for this example are presented in Table 3.1 for variables that have 
unrestricted means of 0, unrestricted standard deviations of 1, and unrestricted intercorrelations 
of .5. The restricted estimates in Table 3.1 represent descriptive statistics for the complete 
observed cases available for analysis (i.e., those for which Y was recorded) using listwise 
deletion. Table 3.1 also contains a modified version of Z labeled Zres – this variable represents 
the unique variance of Z that is not shared with X after accounting for the relation between X 
and Z in the unrestricted data. The correlation between X and Zres in the restricted data provides 
information about the severity with which selection artifacts have impacted the covariate, and 
this correlation is useful when using Zres to control for selection artifacts in regression models.  

Table 3.1. Descriptive Statistics for Range-Restriction Example 

  Descriptive Statistics  Correlations 

Data Type Variable M SD  Y X Z 

Unrestricted Y 0.00 1.00  --- --- --- 

 X 0.00 1.00  0.50 --- --- 

 Z 0.00 1.00  0.50 0.50 --- 

 Zres 0.00 0.87  0.29 0.00 0.87 

        

Restricted Y 0.40 0.92  --- --- --- 

 X 0.40 0.92  0.41 --- --- 

 Z 0.80 0.60  0.33 0.33 --- 

 Zres 0.60 0.63  0.02 -0.42 0.72 
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Estimating Regression Coefficients that are not Biased by Selection Artifacts 

Table 3.2 shows regression coefficients for the example described above, with separate results 
reported for the unrestricted data that are unavailable to the researcher (these results represent 
the unobserved “truth” about how the variables relate) and the restricted data that are available 
to the researcher. The first row of Table 3.2 shows the unrestricted X-Y relationship the 
researcher is most interested in, while the second row shows the coefficients the researcher 
would get if they tested that relationship using their restricted data. Comparing these 
unrestricted and restricted coefficients makes it clear that the researcher will do a poor job of 
characterizing the true X-Y relationship unless they do something to account for the selection 
artifacts, as both the intercept and the slope are misestimated to a non-trivial degree.  

By comparison, the researcher would have no problem estimating the Z-Y relationship (see 
rows 3-4 of Table 3.2). As Z was the sole selection variable that caused the missing values for 
Y, its inclusion in a model that predicts Y leads to unbiased estimation of the Z-Y relationship 
due to the invariance of coefficients under selection. By extension, the researcher would have 
no difficulty estimating coefficients that relate X and Z to Y in a multiple regression model (see 
rows 5-6 of Table 3.2). However, the coefficients from this type of multiple regression model are 
not appropriate for characterizing the direct bivariate X-Y relationship, as the model accounts for 
the shared variance between X and Z when estimating the coefficients and the X coefficient no 
longer describes the unique relationship between X and Y.  

Ideally, the researcher would use a model that can account for Z’s influence in the selection 
process while attributing any variance shared between X and Z to X alone. Fortunately, this is 
possible to do, and it requires only a small amount of pre-processing to accomplish. To ensure 
that Z does not “steal” any variance from X in the regression model, the researcher can create a 
residualized version of Z that represents only the variance that is independent of X. This involves 
regressing Z on X using unrestricted predictor data, computing predicted/fitted Z estimates, and 
subtracting those predicted estimates from Z to obtain a vector of residual scores; these residuals 
are the Zres variable we introduced earlier in Table 3.1. Including Zres as a covariate in a model 
with X to predict Y will allow the researcher to control for the biasing effects of selection artifacts 
while obtaining coefficients that accurately reflect the direct relation between X and Y (see the “X 
& Zres” results in rows 7-8 of Table 3.2 and compare them to row 1).  

Table 3.2. Regression Coefficients for Range-Restriction Example 

  Regression Coefficients 

Predictor(s) in 
Model 

Data Type Intercept X Z Zres 

X Unrestricted 0.00 0.50 --- --- 

 Restricted 0.24 0.41 --- --- 

Z Unrestricted 0.00 --- 0.50 --- 
 Restricted 0.00 --- 0.50 --- 

X & Z Unrestricted 0.00 0.33 0.33 --- 

 Restricted 0.00 0.33 0.33 --- 

X & Zres Unrestricted 0.00 0.50 --- 0.33 

 Restricted 0.00 0.50 --- 0.33 

 
 
  



 

Evaluating the ASVAB Armed Services Qualification Test for Differential Prediction 4 

The coefficients from the example in Table 3.2 gave a simple illustration of how one can include 
residualized covariates in a model to debias estimates of the coefficients one is most interested 
in. The principles from that example generalize to more complex regression models with 
multiple predictors of interest (such as those used in the Cleary framework), and they also 
generalize to logistic regression models. 

Estimating the Unrestricted Variance of a Criterion Variable 

After one has included covariates in a regression model to debias the estimates of coefficients, 
one can use those coefficients to estimate the unrestricted variance of a restricted criterion 
variable. In the context of our differential prediction analyses, this is valuable for estimating a 
more appropriate unrestricted scaling factor for the dMod effect sizes we discuss later. The 
process of obtaining this unrestricted variance estimate is based in the Pearson-Aitken-Lawley 
selection theorem (Aitken, 1935; Lawley, 1944; Pearson, 1903), which defines how to correct for 
(or induce) selection artifacts in a covariance matrix. To estimate the unrestricted variance of a 
continuous variable that is merely correlated with a selection variable, but was not involved in 
the selection process, one can use the following formula: 

σ̂𝑌𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 = σ𝑌𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 − σ�̂�𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2
+ σ�̂�𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2  

where σ̂𝑌𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2  is the estimated unrestricted variance of Y (the variable that has been 

indirectly impacted by selection), σ𝑌𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2  is the observed variance of Y in the restricted data, 

σ�̂�𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2  is the predicted variance of Y in the restricted data based on a regression model, and 

σ�̂�𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2  is the predicted variance of Y in the unrestricted data. This additive variance 

approach is only appropriate for continuous variables; we describe an approach for correcting 
the variance of a binary variable later in this chapter.  

We demonstrate this in Table 3.3 using the same models as we presented earlier in Table 3.2. 
The first row of Table 3.3 shows the result our hypothetical researcher is most interested in: The 
relations between X and Y in the unrestricted population. However, the researcher only has 
restricted data for Y, so their analysis of X and Y would yield the estimates in the second row; 
these range-restricted results substantially underestimate the unrestricted variance of Y. 

Once the researcher includes Z in their models (see Table 3.3; rows 3-8), they can estimate the 
unrestricted variance of Y without bias (i.e., they correctly recover the variance of 1.00). By 
including both X and Zres as predictors in a model, the coefficient for X estimated from restricted 
data becomes an unbiased estimate of the unrestricted population parameter (see Table 3.2); 
this, combined with the fact that X and Zres are uncorrelated in the unrestricted population, 
means that one can estimate the proportion of unique unrestricted criterion variance explained 
by X.  

The methods we used in this example to residualize an auxiliary predictor and obtain estimates 
of regression coefficients and criterion variances that are unbiased by selection artifacts are 
central to the methods we used in our differential prediction analyses. We used these methods 
to debias the coefficients in our regression models whenever a variable (or set of variables) 
other than the predictor(s) of interest carried information about selection artifacts. 
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Table 3.3. Variance Estimates for Range-Restriction Example 

  Variance 

  Analysis Data  Unrestricted Data* 

Predictors Data Type 𝑌𝑂𝑏𝑠 �̂� �̂�𝑋 �̂�𝑍  �̂� �̂�𝑋 �̂�𝑍 𝑌𝐸𝑠𝑡 

X Unrestricted 1.00 0.25 0.25 ---  0.25 0.25 --- 1.00 
 Restricted 0.84 0.14 0.14 ---  0.16 0.16 --- 0.93 

Z Unrestricted 1.00 0.25 --- 0.25  0.25 --- 0.25 1.00 
 Restricted 0.84 0.09 --- 0.09  0.25 --- 0.25 1.00 

X & Z Unrestricted 1.00 0.33 0.11 0.11  0.33 0.11 0.11 1.00 
 Restricted 0.84 0.17 0.09 0.04  0.33 0.11 0.11 1.00 

X & Zres Unrestricted 1.00 0.33 0.25 ---  0.33 0.25 --- 1.00 

 Restricted 0.84 0.17 0.21 ---  0.33 0.25 --- 1.00 

Note. *The unrestricted data is the same as the analysis data for the “Unrestricted” data type. 𝑌𝑂𝑏𝑠 = observed 

criterion scores available for use in an analysis. �̂� = predicted criterion scores using all predictors involved in a 

regression model. �̂�𝑋 = predicted criterion scores using only predictor X. �̂�𝑍 = predicted criterion scores using only 

predictor Z. Var(𝑌𝐸𝑠𝑡) = Var(𝑌𝑂𝑏𝑠) − Var(�̂�𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝐷𝑎𝑡𝑎) + Var(�̂�𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎). Values in italics would not be useful to 

a researcher because they represent partial estimates of variance that fail to account for the shared variance of 
predictors. Coefficients are not shown for Zres because they are not of substantive interest when a residualized 
covariate is included in a model.  
 

 
Procedures for Fitting Differential Prediction Regression Models 

We used the principles described above to account for selection artifacts in our models and 
reduce selection’s biasing effects on our regression coefficients. Below, we describe (a) the pre-
processing steps we used to construct residualized covariates that can help account for 
selection artifacts, (b) the regression models we fit to our data, (c) additional steps we took to 
estimate versions of main-effect-only models that better reflect unrestricted relations, and (d) the 
model contrasts we used to detect intercept differences and slope differences.  

Pre-Processing Procedure for Residualized Covariates 

Many of the analyses we performed required multiple covariates to account for non-AFQT 
selection effects, and we combined these covariates into a composite before including them in 
our regression models.1 We had initially planned to enter the individual covariates into our 
models, but we found this led to instability and overfitting. Some analyses required as many as 
four covariates, which would have greatly increased the complexity of our models by adding 
eight total predictors (four for main effects and four for covariate-subgroup interaction effects). 
Rather than limit our analyses to samples that had sufficient data to accommodate these high-
complexity models, we developed a strategy for constructing composite covariates that would 
allow us to limit the complexity of our models while still accounting for the influence of variables 

 
 
 
1 The residualized covariate composites used in predictive bias analyses for each Service are 
documented in the substantive analysis chapters that follow. These composites reflected one or more 
ASVAB “line scores” (i.e., composites of ASVAB subtest score used by Services to inform occupation-
specific assignment/qualification), or a composite of ASVAB subtests that do not contribute to the AFQT 
composite. 
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other than AFQT scores that contribute to selection artifacts via formal selection and 
classification processes in the Services. 

Before computing a composite covariate, we had to put each of the covariates on a 
standardized scale so they could be combined in a meaningful way. We established this 
standardized scaling by computing the mean and standard deviation of each jth covariate for the 
N applicants in the unrestricted population: 

𝑀𝑗 =
∑ 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑖𝑗

𝑁
𝑖=1

𝑁
 

𝑆𝐷𝑗 = √∑ (𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑖𝑗 − 𝑀𝑗)
2𝑁

𝑖=1

𝑁
 

We then used these means and SDs to standardize the covariates in both the restricted and 
unrestricted data sets, and we averaged the resulting standardized scores across k covariates 
to arrive at a composite covariate we will call Z. For each ith case in the restricted and 
unrestricted data sets, we computed Z as: 

𝑍𝑖 =
(∑

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑖𝑗−𝑀𝑗

𝑆𝐷𝑗

𝑘
𝑗=1 )

𝑘
 

After defining the composite covariate, we proceeded with the residualization process that 
would prepare the covariate and its interaction with the subgroup dummy variable for inclusion 
in our models. At this point in our process, we constructed product terms representing the 
predictor × subgroup interaction for scores on both the AFQT and Z: 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 = 𝐴𝐹𝑄𝑇 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍 = 𝑍 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

Recall that the goal of this residualization procedure is to force covariates to have correlations of 
exactly zero with each of the primary predictors in the unrestricted population while preserving 
the covariates’ unique variance that can help to account for selection artifacts. Residualizing the 
covariate and its interaction variable allowed us to account for both the main effect of the 
covariate and any subgroup slope differences that can be uniquely attributed to the covariate. 
We fit the following linear regression models predicting Z and its interaction variable from AFQT 
scores, subgroup membership, and AFQT scores’ interaction variable in the unrestricted 
predictor data: 

𝑍 = 𝑏𝐴0 + 𝑏𝐴1 × 𝐴𝐹𝑄𝑇 + 𝑏𝐴2 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑏𝐴3 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 + 𝑒 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍 = 𝑏𝐵0 + 𝑏𝐵1 × 𝐴𝐹𝑄𝑇 + 𝑏𝐵2 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑏𝐵3 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 + 𝑒 

where the capitalized letter subscripts on regression coefficients differentiate the models and 
indicate that they were only used in pre-processing; we use numeric subscripts to differentiate 
the models we tested for substantive analyses. 

  



 

Evaluating the ASVAB Armed Services Qualification Test for Differential Prediction 7 

We then used these regression models to compute fitted/predicted values for Z and its 
interaction variable using restricted predictor data: 

�̂� = 𝑏𝐴0 + 𝑏𝐴1 × 𝐴𝐹𝑄𝑇 + 𝑏𝐴2 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑏𝐴3 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍
̂ = 𝑏𝐵0 + 𝑏𝐵1 × 𝐴𝐹𝑄𝑇 + 𝑏𝐵2 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑏𝐵3 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 

Finally, we computed residualized values for Z and its interaction variable using restricted 
predictor data: 

𝑍𝑅𝑒𝑠 = 𝑍 − �̂� 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍 − 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍
̂  

After constructing the 𝑍𝑅𝑒𝑠 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 variables, our data were ready to fit regression 

models and use the logic of the Cleary framework to conduct inferential tests of differential 
prediction. 

Regression Models for Inferential Tests of Differential Prediction 

We used a slightly modified version of the Cleary framework to test for differential prediction 
while accounting for the influence of Z in explaining selection artifacts. We fit the following three 
regression models: 

Model 1: 𝑌 =  𝑏10 + 𝑏11 × 𝑍𝑅𝑒𝑠 + 𝑏12 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 + 𝑏13 × 𝐴𝐹𝑄𝑇 + 𝑒 

Model 2: 𝑌 =  𝑏20 + 𝑏11 × 𝑍𝑅𝑒𝑠 + 𝑏22 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 + 𝑏23 × 𝐴𝐹𝑄𝑇 + 𝑏24 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑒 

Model 3: 𝑌 =  𝑏30 + 𝑏31 × 𝑍𝑅𝑒𝑠 + 𝑏32 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 + 𝑏33 × 𝐴𝐹𝑄𝑇 + 𝑏34 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑏35 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 + 𝑒 

These models differ from a typical set of differential prediction models by the inclusion of 𝑍𝑅𝑒𝑠 
and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠. 

Although the models above are useful for evaluating model contrasts, the coefficients from 
Models 1 and 2 are not necessarily the best representation of unrestricted main effects when 
the AFQT interaction term is omitted. To offer a better characterization of main effects in the 
unrestricted data, we estimated alternate versions of Models 1 and 2 that explain the same 
amount of variance as Model 3 but partition the variance differently across predictors to produce 
debiased estimates of coefficients for main effects. We present the methods for estimating 
these alternate versions of Models 1 and 2 in the following subsection. 

Procedures for Estimating Versions of Main-Effect Models with Coefficients that 
Generalize to Unrestricted Data 

We used residualization procedures to debias the main effect estimates from Models 1 and 2 
that were very similar to the procedures we used to prepare the 𝑍𝑅𝑒𝑠 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 

variables. To debias the AFQT main effect coefficient from Model 1, we created versions of the 
𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 variables that were uncorrelated with AFQT scores in the 

unrestricted population. Likewise, to debias the AFQT and Subgroup main effects from Model 2, 
we created a version of the 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 variable that was uncorrelated with AFQT scores 

and the subgroup-membership dummy variable.  
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The first step in preparing these residualized predictors was to fit the following three linear 
regression models using unrestricted applicant data: 

𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 = 𝑏𝐶0 + 𝑏𝐶1 × 𝐴𝐹𝑄𝑇 + 𝑒 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 = 𝑏𝐷0 + 𝑏𝐷1 × 𝐴𝐹𝑄𝑇 + 𝑒 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇′ = 𝑏𝐸0 + 𝑏𝐸1 × 𝐴𝐹𝑄𝑇 + 𝑏𝐸2 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑒 

We then used those regression models to generate the following fitted/predicted values for the 
restricted predictor data: 

𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝̂ = 𝑏𝐶0 + 𝑏𝐶1 × 𝐴𝐹𝑄𝑇 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇
̂ = 𝑏𝐷0 + 𝑏𝐷1 × 𝐴𝐹𝑄𝑇 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇′̂ = 𝑏𝐸0 + 𝑏𝐸1 × 𝐴𝐹𝑄𝑇 + 𝑏𝐸2 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

We used the fitted/predicted values to create residualized versions of the predictors for inclusion 
in Model 1′ and Model 2′ (Model 1 “prime” and Model 2 “prime”): 

𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑅𝑒𝑠 = 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 − 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝̂  

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇_𝑅𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 − 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇
̂  

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇_𝑅𝑒𝑠′ = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 − 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇′̂  

Although the subgroup dummy variable is dichotomous, we used linear regression rather than 
logistic regression to predict it because our goal was simply to control for the correlation 
between variables. Using linear regression allowed us to “partial out” the variance shared with 
AFQT scores and produce residuals that could be used effectively within our modeling effort. 

After preparing residualized versions of the 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇 variables, we fit the 

following reformulations of Models 1 and 2 to obtain debiased estimates of main effects that 
account for AFQT-related selection artifacts:   

Model 1′: 𝑌 =  𝑏1′0 + 𝑏1′1 × 𝑍𝑅𝑒𝑠 + 𝑏1′2 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 + 𝑏1′3 × 𝐴𝐹𝑄𝑇 + 𝑏1′4 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑅𝑒𝑠 + 𝑏1′5 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇_𝑅𝑒𝑠 + 𝑒 

Model 2′: 𝑌 =  𝑏2′0 + 𝑏2′1 × 𝑍𝑅𝑒𝑠 + 𝑏2′2 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍_𝑅𝑒𝑠 + 𝑏2′3 × 𝐴𝐹𝑄𝑇 + 𝑏2′4 × 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑏2′5 × 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐹𝑄𝑇_𝑅𝑒𝑠′ + 𝑒 

We used Models 1′ and 2′ exclusively to obtain better estimates of coefficients from models that 
only involve main effects. These prime models have the same explanatory value and model fit 
statistics as Model 3, so they are not suitable for making model comparisons; we used the 
original versions of Model 1 and 2 in all model-comparison analyses.  

Model Fit and Model Comparisons 

We evaluated model fit and changes in model fit using conventional approaches for linear and 
logistic regression analyses. For linear models, we used F tests to evaluate the statistical 
significance of variance explained by the models and differences in variance explained between 
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models. For logistic regressions, we used deviance tests based on chi-squared distributions to 
evaluate the statistical significance of model fit and differences in model fit.  

We used the regression models described above to evaluate model contrasts and determine 
whether and how subgroups’ regression lines differed. We tested the following contrasts: 

• Omnibus Contrast: Model 3 vs. Model 1 

o This model comparison establishes whether subgroups’ regression lines differ in 
any way. 

o If it was not significant, we concluded that subgroups’ regression lines do not 
differ. 

o If it was significant, we proceeded to test for slope differences. 

• Slope Contrast: Model 3 vs. Model 2 

o This model comparison establishes whether subgroups’ regression lines have 
different slopes. 

o If it was significant, we stopped our interpretation and concluded that there are 
slope differences. 

o If it was not significant, we proceeded to test for intercept differences. 

• Intercept Contrast: Model 2 vs. Model 1 

o This model comparison establishes whether subgroups’ regression lines have 
different intercepts. 

o If it was significant, we concluded that there are intercept differences. 

o If it was not significant, we concluded that subgroups’ regression lines do not 
differ. 

 
The outcome of this set of contrasts was a collection of model-difference tests (i.e., statistics for 
F tests or deviance tests) and a categorical decision about whether groups’ lines were the 
same, had intercept differences, or had slope differences. 

We also computed R2 estimates to express model fit as an effect size, and we used these 
statistics to compute ΔR2 estimates that represent the differences in model fit for each of the 

model contrasts. Linear regression analyses naturally lend themselves to use of R2 statistics to 
characterize model fit in terms of an effect size, whereas logistic regression analyses do not; 
linear regression explicitly maximizes R2 in a closed-form solution when fitting a model, while 
logistic regression uses iterative estimation to maximize a likelihood function.  

Models that predict binary outcomes require additional steps to represent their fit in terms of a 
“pseudo” R2 metric. There are many formulations of pseudo R2 statistics available (e.g., 
Nagelkerke, McFadden, Efron, Cox and Snell), but we used a simple approach that we argue is 
the most conceptually similar to the R2 estimates form linear models. Linear R2 estimates are 
squared correlations between observed outcomes and model-predicted outcomes. Similarly, the 
pseudo R2 estimates we used for the logistic models are squared point-biserial correlations 
between observed dichotomous outcomes and model-predicted probabilities of those outcomes. 
This approach to computing pseudo R2 estimates is based on relevant model output, simple to 
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interpret, and consistent with our linear regression analyses. However, since R2 is not a native 
concept for logistic regression analyses, it is possible for ΔR2 estimates for model contrasts to 

be negative; this never happens with linear regression models because adding predictors can 
never worsen the maximum-likelihood R2 (a larger model can be worse in terms of its shrunken 
R2 estimate or a cross-validated R2 estimate, but never in terms of its maximum-likelihood R2). 

Procedures for Computing dMod Effect-Size Estimates 

As mentioned in Chapter 1, we supplemented our Cleary-based regression analyses with dMod 
effect-size estimates that characterize the standardized average magnitudes of differences 
between subgroup regression lines (Dahlke & Sackett, 2018; Nye & Sackett, 2016).  

The dMod effect sizes are based on differences between predictions generated by the regression 
equations for the focal and referent subgroup, using the focal subgroup’s predictor score 
distribution as the input to both regression equations. The mean differences between these 
distributions of predictions get standardized by dividing them by the standard deviation of 
observed criterion scores in the referent group. Using the focal predictor score distribution to 
generate predictions and using the referent group’s criterion standard deviation for scale allows 
dMod to address two important questions:  

1. How different are predictions for the focal group if we use a model that is specific to the 
focal group versus a model that characterizes predictor-criterion relations in the referent 
group?  

2. How large are these differences relative to the amount of variability we observed in the 
referent group? 

dMod effect sizes can be interpreted much like Cohen’s d, Hedges’ g, or Glass’ Δ effect sizes. 
The difference between those metrics and dMod effect sizes is that d, g, and Δ are all computed 
from observed scores, whereas dMod is computed from predicted scores. As an example of 
interpretation, a dMod effect of .5 would indicate that, on average, the focal group’s performance 
is overpredicted by half of a referent group standard deviation (traditionally interpreted as a 
medium effect), whereas a dMod effect of -.2 would indicate that, on average, the focal group’s 
performance is underpredicted by one fifth of a referent group standard deviation (traditionally 
interpreted as a small effect). 

The methods we used to estimate differences between groups’ regression lines and the referent 
group’s unrestricted criterion standard deviation are described in the following subsections.  

Estimates of Differences in Prediction 

The dMod effect sizes all involve dividing some difference in prediction by a scaling factor, and 
the numerator of that ratio is a function of subgroup regression equations. We used coefficients 
from Model 3 to construct the subgroup equations, and we used the focal group’s applicant 
AFQT distribution to compute predictions as follows:  

�̂�𝐹𝑜𝑐𝑎𝑙 = (𝑏30 + 𝑏34) + (𝑏33 + 𝑏35) × 𝐴𝐹𝑄𝑇𝐹𝑜𝑐𝑎𝑙 

�̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡
∗ = 𝑏30 + 𝑏33 × 𝐴𝐹𝑄𝑇𝐹𝑜𝑐𝑎𝑙 
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where 𝑏30 + 𝑏34 gives the intercept for the focal group that accounts for the main effect of group 
membership, and 𝑏33 + 𝑏35 gives the slope for the focal group that accounts for the interaction 

between AFQT scores and group membership. We represent �̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡
∗  with an asterisk as a 

reminder that, although we computed these predictions using coefficients from the referent 
group’s regression line, the predictions are a function of the focal group’s AFQT score distribution. 
It is important to emphasize that these predictions are based on the focal group’s applicant 
distribution of AFQT scores; this, combined with the procedures we used to mitigate the impact of 

selection artifacts on our estimates of regression coefficients, means that �̂�𝐹𝑜𝑐𝑎𝑙 and �̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡
∗  

represent estimates of predictions from the focal group’s unrestricted applicant population.   

For logistic regression models, the initial �̂� values were in the logit metric. We used the following 
transformation to convert these estimates to probabilities: 

�̂�𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑒�̂�𝐿𝑜𝑔𝑖𝑡

1 + 𝑒�̂�𝐿𝑜𝑔𝑖𝑡
 

where 𝑒�̂�𝐿𝑜𝑔𝑖𝑡 is an intermediate conversion from the logit metric to the odds metric.   

We used the unrestricted predictor distribution from the focal subgroup to compute conditional 
differences in prediction between the subgroups’ regression lines: 

�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = �̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡
∗ − �̂�𝐹𝑜𝑐𝑎𝑙 

The distribution of �̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 values provides the necessary data to compute estimates of 

average differences in prediction that can then be scaled into a standardized metric using an 
estimate of the referent group’s unrestricted criterion standard deviation. 

Estimates of Unrestricted Criterion Variances 

After computing the distribution of differences in prediction we described in the previous 
subsection, the other input needed to compute dMod effect sizes is a scaling factor that reflects 
the standard deviation of criterion scores in the referent group. The most informative scaling 
factor is one that gives an unrestricted estimate of the referent group’s criterion standard 
deviation so the resulting effect sizes properly quantify standardized differences in prediction in 
the applicant population.   

Regardless of whether a criterion is continuous or dichotomous, it is possible to estimate the 
unrestricted variance of the criterion by capitalizing on principles of regression. We describe the 
procedures for doing so in the following subsections on linear and logistic regressions. 
Regardless of the type of regression model, the process for estimating the unrestricted variance 
of criterion scores in the referent group involves knowledge about the referent group’s 
distribution of unrestricted predicted values. We used coefficients from Model 3 to compute 
predictions for the referent group as follows: 

�̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡 = 𝑏30 + 𝑏31 × 𝑍𝑅𝑒𝑠_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡 + 𝑏33 × 𝐴𝐹𝑄𝑇𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡 

where 𝑍𝑅𝑒𝑠_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡 and 𝐴𝐹𝑄𝑇𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡 are unrestricted score distributions. For logistic models, 

we converted �̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡 values from the logit metric to the probability metric using the 

transformation presented above.  
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Linear Regression Models 

For linear regression models, we can estimate the unrestricted standard deviation of the 
criterion in the referent group using three variance terms that are simple to obtain: The variance 

of observed criterion scores in the restricted data (𝑆𝐷𝑌𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 ), the variance of predicted 

criterion scores in the restricted data computed using Model 3 (𝑆𝐷�̂�𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 ), and the 

variance of predicted criterion scores in the unrestricted data computed using Model 3 

(𝑆𝐷�̂�𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 ). The terms can be combined as follows: 

𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
= √𝑆𝐷𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 − 𝑆𝐷�̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2 + 𝑆𝐷�̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

2  

This formula is equivalent to the portion of the Pearson-Aitken-Lawley selection theorem that 
specifies how to estimate the unrestricted standard deviation of a variable for which unrestricted 
data are unavailable (Aitken, 1935; Lawley, 1944; Pearson, 1903). It relies on linear 
regression’s assumption of homoscedasticity of residuals, which requires that the unexplained 
variance of criterion scores is consistent across the distribution of predictor scores. In other 
words, the overall variance of residual criterion scores is assumed to be equal to the conditional 
variance of residual criterion scores across the range of predictor scores. Additionally, this 
formula assumes that the variance of residual criterion scores is invariant to selection (i.e., it is 
the same when it is computed using restricted data or unrestricted data), which is true when the 
model includes all the variables that contributed to the selection process that produced the 
restricted sample. Thus, by subtracting the variance of restricted predicted values from the 
variance of restricted observed values, we get the residual variance of criterion scores (an 
invariant term). Then, by adding the variance of unrestricted predicted values, we get an 
estimate of the total variance of unrestricted criterion scores, which is the sum of explained and 
unexplained variance in unrestricted criterion data. 

Logistic Regression Models 

For logistic regression models, the process of estimating the unrestricted variance of a criterion 
is quite different. Unlike linear regression, logistic regression does not involve an assumption 
about the homoscedasticity of residuals, so the strategy of adding and subtracting variance 
terms does not generalize from continuous criteria to binary criteria. Instead, we can rely on 
important characteristics of (a) standard deviations of binary variables and (b) means of 
predicted criterion scores.  

The mean of a 0/1 binary variable is the proportion of cases that have a score of 1 (e.g., the 
proportion of people who passed a class or the proportion of people who attritted), and this 
proportion (p) is the fundamental input for computing the standard deviation of the variable. The 
proportion of cases who have a score of 0 on the binary variable is 𝑞 = 1 − 𝑝, and the product of 

𝑝 × 𝑞 is the maximum-likelihood estimate of the binary variable’s variance. This relationship 
between the mean and variance of a binary variable means that we only need to estimate the 
unrestricted mean of a binary criterion to arrive at an estimate of the unrestricted variance. 
Fortunately, this is simple to do: Because of the way we have formulated our regression models, 
we can use Model 3 to compute probability-metric predictions for the unrestricted data, and the 
mean of these probabilities should closely approximate the unrestricted mean of the criterion. 
With a reasonable estimate of the unrestricted mean in hand, it is straightforward to compute an 
estimate of the unrestricted standard deviation using the following equation: 
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𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
= √�̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × (1 − �̂�𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

This variance-estimation approach for logistic regression models is very different from the 
approach for linear regression models, but is equally supported by the mechanics of the 
underlying modeling procedure.  

Estimates of dMod Effects 

We used the distribution of conditional differences in prediction represented by �̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and 

the scaling factor represented by 𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
 to compute dMod effect sizes for each 

subgroup contrast we evaluated. The dMod family of effect sizes consists of four main statistics, 
each of which offers a different but complementary characterization of differences in prediction. 
The four effect sizes can be considered two pairs of statistics: a pair of overall averages 
(dMod_Signed and dMod_Unsigned) and a pair of directional averages (dMod_Under and dMod_Over).  

Nye and Sackett (2016) introduced the overall average effects, and Dahlke and Sackett (2018) 
introduced the directional averages while sharing some general refinements to the original dMod 
effect sizes. These refinements included clarifications about the overall averages and new non-
parametric algebraic formulas to supplement Nye and Sackett’s parametric integration-based 
formulas, which assume a normal distribution for predictors. Our computational approach 
follows Dahlke and Sackett’s non-parametric strategy, as we had large distributions of AFQT 
scores and wanted our dMod effect sizes to reflect any departures from normality present in the 
focal subgroups’ applicant populations.  

The two overall average effect sizes are known as dMod_Signed and dMod_Unsigned and they 
summarize difference in prediction across the entire range of predictor scores. The dMod_Signed 
effect size is the net average of all differences in prediction across all values of predictor scores 
and is computed as: 

𝑑𝑀𝑜𝑑_𝑆𝑖𝑔𝑛𝑒𝑑 =
mean(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

 

As a net average, dMod_Signed can reveal the prevailing differential prediction effect within a 
sample. A positive dMod_Signed result indicates that, on average, overprediction is the most 
prevalent effect, while a negative dMod_Signed result indicates that, on average, underprediction is 
the most prevalent effect. However, because it gives a net average, any given dMod_Signed result 
could be obtained by an infinite number of possible regression-line configurations. For example, 
a dMod_Signed result of 0 could mean that the subgroup regression lines are exactly equal (same 
slopes and intercepts), but it could also mean that the lines cross and within the range of 
operational predictor scores and the overprediction effects simply cancel out the underprediction 
effects. It is important to resolve this ambiguity by reviewing the configuration of subgroups’ 
regression lines and considering the pattern of results from other dMod statistics.  

The dMod_Unsigned effect size represents the average absolute value of difference in prediction, 
meaning that it can only be zero or positive. It is computed as: 

𝑑𝑀𝑜𝑑_𝑈𝑛𝑠𝑖𝑔𝑛𝑒𝑑 =
mean(|�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒|)

𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
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This effect size can complement dMod_Signed by indicating the overall average in differences, 
regardless of their direction. If dMod_Unsigned equals the absolute value of dMod_Signed, it means there 
is a consistent direction of differences between subgroup regression lines (i.e., they do not 
cross within the operational range of predictor scores). However, if dMod_Unsigned is greater than 
the absolute value of dMod_Signed, it means subgroup regression lines cross within the operational 
range of predictor scores. This can be useful for generic MMR analyses, but it is admittedly not 
the most informative for differential prediction effects because, in this domain, the directions of 
the differences are of great importance. A more informative indicator of whether subgroup 
regression lines cross—and how much this impacts differences in prediction—is the pattern of 
directional dMod effect sizes.   

Just as we can compute overall averages of differences in prediction, we can compute averages 
of differences for separate segments of the predictor distribution. The two segmented averages 
that have been formalized within the dMod framework represent separate effect sizes for 
underprediction and overprediction, called dMod_Under and dMod_Over, respectively. The dMod_Under 
effect size is computed as: 

𝑑𝑀𝑜𝑑_𝑈𝑛𝑑𝑒𝑟 = P(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 0) ×
mean(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[<0])

𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

 

where �̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[<0] represents all negative differences in prediction observed within the 

sample and P(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 0) represents the proportion of the sample associated with negative 

differences in prediction. We multiply the mean negative difference by the proportion of negative 
differences so that the effect size can properly characterize the magnitude and prevalence of 
underprediction effects. When there is no underprediction, dMod_Under is zero.  

The overprediction counterpart to dMod_Under is dMod_Over, which is computed as: 

𝑑𝑀𝑜𝑑_𝑂𝑣𝑒𝑟 = P(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 0) ×
mean(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[>0])

𝑆�̂�𝑌𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑡_𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

 

where �̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[>0] represents all positive differences in prediction observed within the sample 

and P(�̂�𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 0) represents the proportion of the sample associated with positive 

differences in prediction. When there is no overprediction, dMod_Over is zero. 

Since the dMod_Under and dMod_Over effect sizes are computed from non-overlapping segments of 
the predictor distribution and are weighted by the prevalence of their directional effects, they 
add up to dMod_Signed and their absolute values add up to dMod_Unsigned. If only one of the directional 
effect sizes is non-zero, it means that subgroups’ regression lines do not cross within the 
operational score range and the differences in prediction between subgroups are in a consistent 
direction. If dMod_Under and dMod_Over are both non-zero, we can infer that subgroups’ regression 
lines cross. If they are both zero, we can infer that there are no differences in prediction across 
the operational range of predictor scores (this is rare, as the regression lines are likely to differ 
in some way, at least due to sampling error). 

We supplemented our dMod_Signed, dMod_Unsigned, dMod_Under and dMod_Over results with conditional dMod 
effect sizes that summarize the signed differences between subgroups’ regression equations at 
key points in the AFQT distribution. Specifically, we computed conditional dMod effects for AFQT 
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scores of 10, 16, 21, 31, 50, 65, 93, which represent the lower bounds of the IVC, IVB, IVA, IIIB, 
IIIA, II, and I AFQT categories, respectively. 

Proof-of-Methods Simulation 

Given the changes we made to established procedures, we ran a targeted simulation to verify 
that these procedures functioned as anticipated. Due to the scope of the simulation, we present 
it in Appendix B rather that incorporate it directly into this chapter. As a high-level summary, the 
simulation supported the value of our residualized covariate approach for recovering estimates 
of unrestricted regression coefficients. Our results also showed that our methods helped in 
estimating dMod statistics, particularly dMod_Signed. 

Procedures for Evaluating Post Hoc Power 

Post hoc power (PHP) is a statistical concept that quantifies the probability of detecting an effect 
of a specific magnitude after an analysis has already been performed on a given data set. It is 
the post-analysis counterpart to a priori power analysis, in which one uses an anticipated effect 
size, a desired power level, and an alpha/significance level to establish a target sample size for 
a data collection effort. Although a priori power is arguably the more useful approach, as it 
informs the design of a study and ideally helps to collect enough data to stand a reasonable 
chance of detecting a hypothesized effect, PHP—if used properly—can provide helpful context 
when interpreting the results of an analysis. We examined PHP to provide context for the results 
of our differential prediction analyses, because these types of analyses tend to have difficulty 
achieving sufficient power to detect slope differences (Onwuegbuzie & Leech, 2004). We took 
measures to ensure our PHP analyses avoided the limitations that commonly undermine the 
value of PHP estimates. 

When the observed effect size from an analysis is used to compute an estimate of PHP for that 
analysis, PHP provides no new information about the analysis (Hoenig & Heisey, 2001). This is 
because the power estimate is entirely determined if one knows the p value from the analysis 
that produced the effect size: An analysis that produced a small p value will have a higher level 
of estimated power, while a study that produced a large p value will have a lower level of 
estimated power. Although the relation between p values and post hoc power estimates is not 
linear, it is strictly monotonic, as such computing PHP for an analysis based on the results of 
that analysis does not increment one’s understanding of the analysis. 

For PHP to produce informative estimates, it is best if the effect size for the power calculations 
comes from an independent sample (e.g., a previous study on the same topic), an aggregate 
effect across multiple samples, or a determination of what constitutes a “meaningful” effect in 
one’s research domain. For example, one could obtain an effect size from information presented 
in a published primary study, technical report, or meta-analysis; one could also set an effect size 
based on an average of effects observed in a set of samples from one’s own study or based on 
an empirical definition of a meaningful effect (e.g., at least 1% increase in variance explained). 
In any case, the effect size used to evaluate power should be independent of (or at least not 
entirely determined by) the sample for which one wishes to evaluate power. 

For our analyses, we evaluated PHP using effect sizes computed via two approaches: (1) 
aggregate effect sizes based on the weighted average magnitude of the top 10% of model 
differences (i.e., contrasts at the 90th percentile and above) observed in a given Service for a 
given criterion variable (e.g., Air Force occupations for which we compared the AFQT-awarding 
course grade relationship between White non-Hispanic Airmen and Black non-Hispanic Airmen) 
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and (2) fixed effect sizes that represent a magnitude of model difference that we judged could 
be meaningful in the context of differential prediction analyses. 

Our linear regression analyses and logistic regression analyses were based on different 
probability distributions, so we present separate summaries of our methods for evaluating power 
for each type of regression analysis in the following subsections.  

Post Hoc Power for Linear Regression Models 

To evaluate PHP for each contrast between linear regression models, we used effect sizes 

based on (a) a normative sample-size weighted average of the top 10% of Δ𝑅2 values and (b) a 

fixed Δ𝑅2 value of .01. We sorted Δ𝑅2 values by descending magnitude and computed the 
average of the top 10% of values as: 

Δ𝑅90%𝑖𝑙𝑒
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ (𝑅𝐹𝑢𝑙𝑙𝑖

2 − 𝑅𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝑖

2 ) × 𝑛𝑖
𝑘
𝑖=90𝑡ℎ %𝑖𝑙𝑒

∑ 𝑛𝑖
𝑘
𝑖=90𝑡ℎ %𝑖𝑙𝑒

 

The effect sizes needed to define the non-central F distribution are based on the ratio of Δ𝑅2 to 
the proportion of variance left unexplained by the larger (or “full”) model. We computed the 

average 𝑅𝐹𝑢𝑙𝑙
2  value across all samples to use in the denominator of our effect size estimates, as 

using an average value in the denominator can provide a more stable power estimate than the 

sample-based 𝑅𝐹𝑢𝑙𝑙
2  value from any individual sample. We computed the average 𝑅𝐹𝑢𝑙𝑙

2  as: 

𝑅𝐹𝑢𝑙𝑙
2̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑅𝐹𝑢𝑙𝑙𝑖

2 × 𝑛𝑖
𝑘
𝑖=1

∑ 𝑛𝑖
𝑘
𝑖

 

We used the 𝑅𝐹𝑢𝑙𝑙
2̅̅ ̅̅ ̅̅ ̅ with the normative Δ𝑅90%𝑖𝑙𝑒

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ value and the fixed .01 Δ𝑅2 value to compute the 

following effect size estimates: 

𝐸𝑆90𝑡ℎ%𝑖𝑙𝑒 =
Δ𝑅90%𝑖𝑙𝑒

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

1 − 𝑅𝐹𝑢𝑙𝑙
2̅̅ ̅̅ ̅̅ ̅

 

𝐸𝑆𝐹𝑖𝑥𝑒𝑑 =
. 01

1 − 𝑅𝐹𝑢𝑙𝑙
2̅̅ ̅̅ ̅̅ ̅

 

We then estimated power to detect a normative 𝐸𝑆90𝑡ℎ%𝑖𝑙𝑒 effect as: 

𝑝𝑜𝑤𝑒𝑟90𝑡ℎ%𝑖𝑙𝑒𝑖
= 1 − 𝑃𝐹(𝐹𝐶𝑉𝑖

; 𝑑𝑓1𝑖
; 𝑑𝑓2𝑖

; 𝜆𝑖 = 𝐸𝑆90𝑡ℎ%𝑖𝑙𝑒 × 𝑛𝑖) 

where 𝐹𝐶𝑉𝑖
 is the critical F value for an α value of .05 and degrees of freedom equal to 𝑑𝑓1𝑖

 and 

𝑑𝑓2𝑖
, and where 𝜆𝑖 is the non-centrality parameter of the F distribution. Likewise, we estimated 

power to detect a fixed Δ𝑅2 value of .01 as: 

𝑝𝑜𝑤𝑒𝑟𝐹𝑖𝑥𝑒𝑑𝑖
= 1 − 𝑃𝐹(𝐹𝐶𝑉𝑖

; 𝑑𝑓1𝑖
; 𝑑𝑓2𝑖

; 𝜆𝑖 = 𝐸𝑆𝐹𝑖𝑥𝑒𝑑 × 𝑛𝑖) 

These power estimates will provide helpful context for understanding the significance tests for 
our sets of nested linear models. 
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Post Hoc Power for Logistic Regression Models 

Whereas the non-centrality parameters for linear regression PHP analyses are based on 
variance ratios that have conventional effect-size interpretations, the effect sizes that inform 
PHP analyses for logistic regressions are based on differences in deviance and are not as easy 
to interpret. The effect size that determines the non-central chi-square distribution for 
comparisons between logistic regression models is: 

𝐸𝑆𝑖 =
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝐹𝑢𝑙𝑙𝑖

− 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝑖
− 𝑑𝑓1𝑖

𝑑𝑓2𝑖

 

where 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝐹𝑢𝑙𝑙𝑖
 is the improvement in model deviance for the larger model over a null 

model, 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝑖
 is the improvement in model deviance for the smaller model over a null 

model, 𝑑𝑓1𝑖
 is the difference in the number of predictors between the larger model and smaller 

model, and 𝑑𝑓2 is the residual degrees of freedom for the larger model. Conventionally, chi-
squared-based models only have one value for degrees of freedom (what we call 𝑑𝑓1; for a chi-
squared distribution, this is also the expected value of the null distribution, which is why it is 
subtracted in the numerator), but the ANOVA-based residual degrees of freedom (𝑑𝑓2) are 
important for scaling the effect size according to a sample size that has been penalized for 
model complexity. This type of effect size is conceptually similar to a phi coefficient (also known 
as a Matthews correlation coefficient [MCC]), where one divides a chi-squared statistic by the 
corresponding sample size and takes the square root of the quotient. Since the effect size for 
PHP does not require taking a square root, it has qualities of an R2-type statistic. 

To evaluate PHP for each contrast between logistic regression models, we used effect sizes 
based on (a) a normative sample-size weighted average of the top 10% of sample-specific 
effects and (b) a fixed effect-size value (𝐸𝑆𝐹𝑖𝑥𝑒𝑑) of .005. We determined this .005 effect size 

was roughly equivalent to a Δ𝑅2 value of .01 by plotting sample effect sizes against their 

corresponding pseudo Δ𝑅2 values across subgroup contrasts and model comparisons.  

We sorted samples’ effect-size values by descending magnitude and computed the average of 
the top 10% of values as: 

𝐸𝑆90%𝑖𝑙𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝐸𝑆𝑖 × 𝑛𝑖
𝑘
𝑖=90𝑡ℎ %𝑖𝑙𝑒

∑ 𝑛𝑖
𝑘
𝑖=90𝑡ℎ %𝑖𝑙𝑒

 

We estimated power to detect a normative effect size of 𝐸𝑆90%𝑖𝑙𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as: 

𝑝𝑜𝑤𝑒𝑟90𝑡ℎ%𝑖𝑙𝑒𝑖
= 1 − 𝑃𝜒2(𝜒𝐶𝑉𝑖

2 ; 𝑑𝑓1𝑖
; 𝜆𝑖 = 𝐸𝑆90𝑡ℎ%𝑖𝑙𝑒 × 𝑛𝑖) 

where 𝜒𝐶𝑉𝑖

2  is the critical 𝜒2 value for an α value of .05 and degrees of freedom equal to 𝑑𝑓1𝑖
. 

Likewise, we estimated power to detect a fixed effect size of .005 as: 

𝑝𝑜𝑤𝑒𝑟𝐹𝑖𝑥𝑒𝑑𝑖
= 1 − 𝑃𝜒2(𝜒𝐶𝑉𝑖

2 ; 𝑑𝑓1𝑖
; 𝜆𝑖 = 𝐸𝑆𝐹𝑖𝑥𝑒𝑑 × 𝑛𝑖) 

These power estimates will provide helpful context for understanding the significance tests for 
our sets of nested logistic models. 
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Interpretation of Post Hoc Power 

Given that our estimates of PHP were based on aggregated effects and rationally set 
benchmark values, we avoided the typical limitations of PHP that arise from estimating power 
based on an observed effect size. Our PHP analyses can provide helpful context for interpreting 
results from samples where we found non-significant differences between regression models. 
PHP can contribute to our understanding of results from MMR model contrasts, as these 
analyses have notoriously low power to detect interaction effects and PHP offers a way to rule 
out low power as an explanation for null findings. 

If a sample has a high estimated level of power to detect our targeted effect sizes but has a 
non-significant observed result, it lends credence to the legitimacy of the non-significant finding 
because we can rule out low power as an explanation for the result. On the other hand, a non-
significant finding from a sample that has low power to detect our targeted effect sizes inspires 
less confidence and stands a greater chance of being a Type II error (i.e., a false negative).  

PHP is less relevant for samples that produced statistically significant findings, as these 
samples already produced the outcome that PHP is meant to evaluate. In other words, it is not 
terribly informative to evaluate the probability of obtaining a significant result in a sample that 
already produced such a result.  

Aggregation of Results 

Our analysis procedures generated a large volume of results across Services, as each 
occupation or course could potentially be examined for differential prediction in four subgroup 
contrasts for each criterion within its respective Service. To summarize results in a way that 
supports an understanding of overall trends, within each Service-specific chapter (i.e., Chapters 
4 through 7), we aggregated the results across all occupations or courses for which analyses 
were conducted in that Service, shared a criterion, and were evaluated for the same subgroup 
contrast (e.g., male vs. female). Each of the Service-specific chapters in this report will present 
a collection of tables for regression analyses and dMod effect sizes summarizing statistical 
estimates and rates of significant results for each combination of subgroup contrast and criterion 
variable. 

During a dry run of our analyses, we realized that not all occupations/courses that met the 
criteria for inclusion in our study (see Chapter 2) would be appropriate to include in aggregate 
summaries of results. This was only a concern for logistic regression models: Some 
occupation/courses had such extreme base rates on their binary criteria that, although they 
satisfied our requirement that the criterion have non-zero variance, the amount of variance was 
too small to fit a stable model. Furthermore, some occupations/courses produced regression 
models with coefficients that were implausibly large given the scaling of the predictors (e.g., 
regression coefficients with values with three digits or more). Such unstable models are 
misleading to include in aggregate summaries of results, and arguably cannot support valid 
insights into differential prediction for the samples they describe.  

After running their analyses, our analysts reviewed their occupation/course-level results, flagged 
analyses with implausibly large regression coefficients, and explored their data for evidence of 
characteristics that could cause problems with model stability. The occupation/course-level 
analyses flagged during this process were retained for inclusion in our appendices of detailed 
results, but we excluded them from our tables of aggregate results. We also excluded these 
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problematic samples from the distributions of model statistics that contributed to the normative 
effect sizes used in our post hoc power analyses. 

Summary 

We augmented the traditional procedures for evaluating differential prediction with regression 
models and dMod statistics to mitigate the biasing impact of selection artifacts on our results. We 
developed a method for using residualized covariates to control for selection artifacts and 
estimate regression coefficients that do a better job of characterizing how AFQT scores, 
subgroup membership, and the AFQT-subgroup interaction relate to criterion scores in the 
unrestricted applicant population (see Appendix B for simulation evidence). We used the 
methods presented in this chapter in the analyses we summarize in Chapters 4 through 8. 
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Appendix B: Summary of Differential Prediction Analysis Methodology Simulation 

Before we deployed our methodology for fitting and evaluating regression models introduced in 
Chapter 3, we ran a simulation to verify that the method had the intended effect of accurately 
recovering the unrestricted population parameters of regression coefficients. In this Appendix, 
we describe our simulation’s methodology and findings.  

Method 

We used Monte Carlo methods to generate data with known patterns of differences in 
prediction, imposed selection artifacts on samples of incumbent data, and applied the 
approaches described in Chapter 3. We then compared the results from our modified Cleary 
analyses to the results from models we fit to unrestricted data without the use of covariates.  

We generated Monte Carlo data in which 70% of applicants were from the higher-scoring 
referent group and 30% were from the lower-scoring focal group. We imposed standardized 
mean differences between these subgroups of .8 for the primary predictor X and the covariate 
Z. We made X and Z correlate .5 within each subgroup, and we also generated a continuous 
criterion variable Y that correlated .3 with X and Z in the referent group. We generated data in 
which subgroups had equal unrestricted standard deviations of 1.0. We introduced differential 
prediction by manipulating mean differences on Y, subgroup differences in the X-Y relationship, 
and subgroup differences in the Z-Y relationship using the conditions presented in Table B.1. 
We also fully crossed the subgroup difference conditions from Table B.1 with selection 
conditions in Table B.2, which define the selection ratios we applied to X and Z. We designed 
the selection conditions in Table B.2 so that each condition had an overall selection ratio of .50, 
regardless of which variables were used to make selection decisions.  

The parameters for this simulation were designed for linear regressions, but we also simulated 
logistic regressions by dichotomizing the criterion variable (cases with z scores above zero were 
coded as 1 and cases with scores below zero were corded as zero). We ran all our analyses 
with and without selection artifacts, so we were able to evaluate the effectiveness of our 
estimation strategy against analyses that were not impacted by the challenges we were trying to 
overcome.  

Table B.1. Differential Prediction Conditions for Simulation 

Difference Condition Differential Prediction Type dY rXY Difference rZY Difference 

1 Equal Prediction 0.24 0.00 0.00 

2 Intercept Difference 0.44 0.00 0.00 

3 Slope Difference 0.24 0.15 0.00 

4 Intercept and Slope Difference 0.44 0.15 0.00 

5 Equal Prediction 0.24 0.00 0.15 

6 Intercept Difference 0.44 0.00 0.15 

7 Slope Difference 0.24 0.15 0.15 

8 Intercept and Slope Difference 0.44 0.15 0.15 
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Table B.2. Selection Conditions for Simulation 

Selection Condition Selection Method SRX SRZ SROverall 

1 Selection on X Only 0.50 1.00 0.50 

2 Selection on Z Only 1.00 0.50 0.50 

3 Selection on X & Z (Equal) 0.64 0.64 0.50 

4 Selection on X & Z (Mostly X) 0.52 0.85 0.50 

5 Selection on X & Z (Mostly Z) 0.85 0.52 0.50 

Note. SRX and SRZ represent selection ratios applied separately to X and Z, respectively. SROverall represents the 

total selection ratio after accounting for the combined effect of selecting on X and Z. 

 

Results 

Throughout our summary of results, we present figures that allow comparisons between 
analyses using (a) unrestricted data vs. restricted data and (b) a regular Cleary-based modeling 
strategy vs. our augmented Cleary approach that includes covariates computed from other 
selection variables (see Chapter 3 for a description of this approach). In each of these figures 
(see Figure B.1 for an example), we recommend making a set of four comparisons among 
“Analysis Types” for each cell of the plot grid. These comparisons are: 

1. Comparing “Unrestricted (Covariate)” to “Unrestricted (Regular)” helps to confirm that 
the use of covariates does not affect coefficient estimates when there are no systematic 
selection effects. These conditions should produce the same results because the 
covariate is not necessary to properly estimate the coefficients in unrestricted data. 

2. Comparing “Restricted (Regular)” to “Unrestricted (Regular)” reveals the estimation bias 
that can occur if selection variables are not included in regression models that are based 
on range-restricted data. If the “Restricted (Regular)” results differ from the “Unrestricted 
(Regular)” results, it indicates that using a traditional Cleary analysis without covariates 
can produce results that mischaracterize the configuration of subgroup regression lines 
in the applicant population. 

3. Comparing “Restricted (Covariate)” to “Unrestricted (Regular)” helps to confirm that the 
methods described in Chapter 3 functioned properly. The “Restricted (Covariate)” results 
should closely approximate the “Unrestricted (Regular)” results if our method function as 
intended. 

4. Comparing “Restricted (Covariate)” to “Restricted (Regular)” (and with “Unrestricted 
(Regular)” serving as an anchoring point) gives an idea of the improvement in estimation 
that can be achieved by including relevant covariates in models based on range-
restricted data. The degree to which “Restricted (Covariate)” closes the distance 
between “Restricted (Regular)” and “Unrestricted (Regular)” represents the benefit of 
including informative covariates in one’s regression analysis.  

 
Collectively, these four comparisons are useful for establishing that the methods from Chapter 3 
are effective at recovering estimates of unrestricted effects when there are selection artifacts 
that could bias those estimates.  
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Linear Regressions 

The first set of results we examined were for linear regression models, and we grouped these 
results according to whether or not the covariate exhibited slope differences between subgroups 
in the unrestricted population.  

Equal Subgroup Slopes for Covariate 

The results of linear regression models featuring a covariate (Z) that has equal slopes between 
subgroups are summarized in Figures B.1–B.5. Figure B.1 shows results for conditions in which 
subgroups’ unrestricted regression lines were the same for the primary predictor (X), Figure B.2 
shows results for conditions in which subgroups’ unrestricted regression lines had different 
intercepts for X, Figure B.3 shows results for conditions in which subgroups’ unrestricted 
regression lines had different slopes for X, and Figure B.4 shows results for conditions in which 
subgroups’ unrestricted regression lines had different intercept and different slopes for X.  

The patterns of results are consistent across Figures B.1–B.5, such that all analysis types 
produce the same estimates when X is the only variable involved in selection, but using 
restricted data to run regular Cleary analyses can introduce biases into the estimates of 
intercepts, predictor main effects, group main effects, and predictor-group interactions when 
both X and Z are used to select applicants. In these analyses where the Z variable had the 
same slope in each subgroup, using Z as the sole selection variable did not noticeably bias the 
estimates of regression coefficients; however, this is not an observation from which one can 
safely generalize. Including covariates based on Z was effective at controlling for the biasing 
impacts of selection artifacts and helped to arrive at coefficient estimates that were better 
representations of the trends we observed in analysis of unrestricted data. 

Figure B.5 shows the results for dMod effect sizes. Including covariates in our range-restricted 
models improved estimates of dMod_Signed in all conditions where selection artifacts had a biasing 
effect on estimates derived from regular Cleary analyses. Using a regular Cleary analysis 
tended to produce negatively biased estimates of dMod_Signed; this means that, when the dMod_Signed 
population parameter was zero, one would be at risk of erroneously detecting underprediction 
and, when that parameter was greater than zero, one would be at risk of underestimating the 
extent of overprediction.  

Covariates also tended to aid in estimating dMod_Under and dMod_Over but, even with the covariates, 
these effects were more challenging to recover. The challenges associated with dMod_Under and 
dMod_Over also impacted dMod_Unsigned, as that effect is the sum of absolute-value directional effects. 
At first, this appears to suggest a problem with our strategy for using covariates; however, as we 
describe below, these trends are more readily attributable to other sources. 

Most of the difficulty associated with estimating dMod_Under, dMod_Over, and dMod_Unsigned can be 
explained by the effect sizes themselves. Consider the results for the equal-prediction 
conditions: In these conditions, the directional dMod effects are zero in the population, but there is 
only one direction for the differences to err in samples drawn from that population. Since 
dMod_Under can only be zero or negative while dMod_Over can only be zero or positive, estimation 
errors for an equal-prediction scenario can only deviate from zero in one direction, which is 
reflected in the average results depicted in Figure B.5.  

This type of single-direction opportunity for estimation errors is amplified in range-restricted 
samples. Even when we use covariates to control for selection artifacts, models fit using range-
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restricted data will tend to have more sampling error, which means there is more room for 
departure from the average coefficients we depicted in Figures B.1–B.4 and, by extension, more 
opportunities for errors in estimates of directional effects. An estimate of dMod_Signed is the sum of 
dMod_Under and dMod_Over, which means that the directional errors associated with each of its 
component effect sizes can cancel each other out; this contributes to dMod_Signed’s stability and 
the relative ease of estimating the overall signed effect. Estimates of dMod_Unsigned, however, do 
not provide a way for the directional errors to cancel out; instead, dMod_Signed inherits the 
directional errors from both dMod_Under and dMod_Over and can therefore be very difficult to interpret 
with any degree of confidence.  

We find further evidence for our explanation of the dMod estimation challenges when we consider 
the difference between settings that should have dMod_Signed effects of zero (conditions with equal 
prediction conditions or slope differences only) and those that have should have non-zero 
effects (conditions with intercept differences, either alone or in combination with slope 
differences). We modeled our intercept differences as overprediction effects, meaning that the 
directional effects should be less volatile in intercept-difference conditions because there is a 
true non-zero dMod_Over effect and, because of this, the average observed dMod_Under effect should 
not deviate substantially from zero. Indeed, the amount of estimation bias attributable to range 
restriction is smaller in intercept-difference conditions than in the other conditions. In general, 
we find that the volatility of dMod_Under, dMod_Over, and dMod_Unsigned estimates is inversely related to 
the absolute magnitude of the dMod_Signed effect. 
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Figure B.1. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Equal Prediction Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Figure B.2. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Figure B.3. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Slope Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Figure B.4. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept and Slope Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Figure B.5. Average Estimates of Linear Regression dMod Effect Sizes Across 100 Simulated Samples from a Population with 
Intercept and Slope Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of dMod effect 
types and configurations of subgroup differences in the unrestricted population. Columns of the grid are color-coded to help distinguish among results that 
correspond to the same type of dMod effect. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Different Subgroup Slopes for Covariate 

The results of linear regression models featuring a covariate that has different slopes between 
subgroups are summarized in Figures B.6–B.10. Figure B.6 shows results for conditions in 
which subgroups’ unrestricted regression lines were the same for X, Figure B.7 shows results 
for conditions in which subgroups’ unrestricted regression lines had different intercepts for X, 
Figure B.8 shows results for conditions in which subgroups’ unrestricted regression lines had 
different slopes for X, and Figure B.9 shows results for conditions in which subgroups’ 
unrestricted regression lines had different intercepts and slopes for X.  

Consistent with our results for conditions in which subgroups had equal slopes for Z, controlling 
for selection artifacts was highly effective at debiasing estimates of linear regression coefficients 
when Z exhibited slope differences. When selection decisions involved Z, using a regular Cleary 
analysis without covariates could produce biased estimates of any regression coefficient; 
including covariates helped to avoid this. 

Figure B.10 shows the results for dMod effect sizes. Whereas our results of conditions with equal 
Z slopes showed that range restriction had a negatively biasing effect on dMod_Signed effects, there 
was a positive bias when the referent group had a larger Z slope than the focal group. Using a 
regular Cleary analysis when an unmodeled selection variable exhibits slope differences puts 
one at risk of overestimating overprediction effects. Including covariates that capture selection 
artifacts helped to counteract this bias and bring the estimates of dMod_Signed into closer alignment 
with the unrestricted effect. Including covariates in regression models also tended to help when 
estimating dMod_Over and dMod_Unsigned, but appears to have introduced some underprediction 
effects that were not present in the unrestricted data. We have previously described the 
challenges associated with estimating dMod_Under, dMod_Over, and dMod_Unsigned effects in range-
restricted settings, so we will not repeat those comments here.  
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Figure B.6. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Equal Prediction Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.7. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Figure B.8. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Slope Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.9. Average Estimates of Linear Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept and Slope Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.10. Average Estimates of Linear Regression dMod Effect Sizes Across 100 Simulated Samples from a Population 
with Intercept and Slope Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of dMod effect 
types and configurations of subgroup differences in the unrestricted population. Columns of the grid are color-coded to help distinguish among results that 
correspond to the same type of dMod effect. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).
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Logistic Regressions 

After finding that including appropriate covariates in linear regression models helped to recover 
estimates of unrestricted regression coefficients and dMod effects, we evaluated whether our 
approach generalized to logistic regression models. These results replicated those from our 
linear regression analyses, so we do not repeat our more detailed observations that we have 
already noted for the linear regressions.  

Equal Subgroup Slopes for Covariate 

The results of logistic regression models featuring a covariate that has equal slopes between 
subgroups are summarized in Figures B.11–B.15. Figure B.11 shows results for conditions in 
which subgroups’ unrestricted regression lines were the same for X, Figure B.12 shows results 
for conditions in which subgroups’ unrestricted regression lines had different intercepts for X, 
Figure B.13 shows results for conditions in which subgroups’ unrestricted regression lines had 
different slopes for X, and Figure B.14 shows results for conditions in which subgroups’ 
unrestricted regression lines had different intercept and different slopes for X. These results 
followed the same pattern as the corresponding results from our linear regression analyses. 
Whereas selection artifacts that involved a variable other than the predictor of interest caused 
misestimation of regression coefficients, adding covariates that captured those incidental 
selection effects brought the coefficient estimates into closer alignment with estimates 
computed from unrestricted data. Figure B.15 shows the results for dMod effect sizes, and the 
trends here replicated the corresponding linear regression dMod trends from Figure B.5. 
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Figure B.11. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Equal Prediction Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.12. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.13. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Slope Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.14. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept and Slope Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.15. Average Estimates of Logistic Regression dMod Effect Sizes Across 100 Simulated Samples from a Population 
with Intercept and Slope Differences Between Subgroups for the Primary Predictor and Equal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of dMod effect 
types and configurations of subgroup differences in the unrestricted population. Columns of the grid are color-coded to help distinguish among results that 
correspond to the same type of dMod effect. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).  
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Different Subgroup Slopes for Covariate 

The results of logistic regression models featuring a covariate that has different slopes between 
subgroups are summarized in Figures B.16–B.20. Figure B.16 shows results for conditions in 
which subgroups’ unrestricted regression lines were the same for X, Figure B.17 shows results 
for conditions in which subgroups’ unrestricted regression lines had different intercepts for X, 
Figure B.18 shows results for conditions in which subgroups’ unrestricted regression lines had 
different slopes for X, and Figure B.19 shows results for conditions in which subgroups’ 
unrestricted regression lines had different intercepts and slopes for X. These results followed 
the same pattern as the corresponding results from our linear regression analyses. Whereas 
selection artifacts that involved a variable other than the predictor of interest caused 
misestimation of regression coefficients, adding covariates that captured those incidental 
selection effects brought the coefficient estimates into closer alignment with estimates 
computed from unrestricted data. Figure B.20 shows the results for dMod effect sizes, and the 
trends here replicated the corresponding linear regression dMod trends from Figure B.10. 
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Figure B.16. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Equal Prediction Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.17. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.18. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Slope Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.19. Average Estimates of Logistic Regression Coefficients Across 100 Simulated Samples from a Population with 
Intercept and Slope Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of regression 
coefficients and Models 1, 2, and 3 from our Cleary-based analyses. Columns of the grid are color-coded to help distinguish among results that correspond to the 
same type of regression coefficient. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3). 
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Figure B.20. Average Estimates of Logistic Regression dMod Effect Sizes Across 100 Simulated Samples from a Population 
with Intercept and Slope Differences Between Subgroups for the Primary Predictor and Unequal Slopes for the Covariate 

Rows of the plot grid represent different methods of introducing selection artifacts, and the columns of the plot grid represent different combinations of dMod effect 
types and configurations of subgroup differences in the unrestricted population. Columns of the grid are color-coded to help distinguish among results that 
correspond to the same type of dMod effect. Analysis Types arrayed on the X axis are either “unrestricted” (i.e., there are no selection artifacts because cases were 
selected at random) or “restricted” (i.e., the data are impacted by selection artifacts because cases were selected systematically, and, parenthetically, they are also 
designated as either “regular” (i.e., a traditional Cleary analysis was run without including a covariate) or involving a “Covariate” (i.e., the residuals of the Z variable 
and its interaction with group membership were included as predictors to aid in estimating the coefficients of interest, as described in Chapter 3).
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Discussion 

We conducted a targeted simulation to evaluate the efficacy of our analysis method for 
estimating regression coefficients and dMod effect sizes using data impacted by selection 
artifacts. We simulated examples of equal subgroup prediction, intercept differences, slope 
differences, and the co-occurrence of slope and intercept differences for both linear and logistic 
regression models using four different configurations of selection artifacts. By including 
covariates that capture information about selection effects that occurred independently of the 
predictor of interest, we were able to improve our recovery of parameters from the unrestricted 
applicant population. Our method performed similarly well in both linear and logistic analyses. 

During this simulation, we identified characteristics of the dMod_Under, dMod_Over, and dMod_Unsigned 
effect sizes that make them challenging to estimate and interpret when one’s data have been 
impacted by range restriction. Whereas dMod_Signed is an efficient estimator that performed quite 
well with our covariate-based Cleary analyses, the other dMod effects are more difficult to 
estimate because of their focus on directional effects. Directional and overall unsigned effects 
are more volatile to estimate than overall signed effects: Whereas overall signed effects are 
freely estimated averages that allow positive and negative errors to cancel each other out, 
directional effects capture these errors independently and overall unsigned effects inherit errors 
from both directions.  

Although we believe dMod_Under and dMod_Over have value for understanding differential prediction 
effects, our simulation results suggest that these effects should be interpreted with caution, 
especially when dMod_Signed is small in magnitude. The dMod_Unsigned effect size, however, is of 
limited value in understanding differential prediction because evaluating differential prediction 
presupposes an interest in knowing the direction of subgroup differences; this, combined with 
the challenges in estimating dMod_Unsigned, substantially limits its usefulness in the context of 
differential prediction research. 

This simulation demonstrated that our analysis approach from Chapter 3 functioned as 
intended. Our covariate-based approach produced coefficient estimates that were much better 
representations of unrestricted data than what we might achieve by using a traditional 
formulation of the Cleary method without covariates. Based on the results of this simulation, we 
proceeded with our analysis approach and applied our methodology to data from the U.S. 
Armed Services.  

 


