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By the mid-1980s, an item pool had been con
structed for use in the experimental CAT-ASV AB sys
tem (Chapter 9), and had been administered to a 
large number of subjects participating in research 
studies. However, this pool was ill-suited for opera
tional use. First, many items had been taken from 
retired P&P-ASVAB fonns (8, 9, and 10). Using these 
items in an operational CAT-ASVAB would degrade 
test security, since these items had broad expo
sure through the P&P testing program. In addi
tion, the experimental CAT-ASVAB system con
tained only one fonn. For retesting purposes, it is 
desirable to have two parallel fonns (consisting of 
non-overlapping item pools) to accommodate ap
plicants who take the battery twice within a short 
time interval. To avoid practice and compromise 
effects, it is desirable for the second administered 
fonn to contain no common items with the initial 
fonn. 

This chapter summarizes the procedures used 
to construct and evaluate the operational CAT

ASVAB item pools. Although specific reference is 
made to Fonns 1 and 2, many of the same proce
dures were applied more recently to the develop
ment of other CAT-ASVAB fonns. The first section 
describes the development of the primary and sup
plemental item banks. Additional sections discuss 
dimensionality, alternate fonn construction, and 
precision analyses. The final section summarizes 
important findings with general implications for 
CAT item pool development. 

Development and Calibration 
Primary Item Banks 

The primary item banks for CAT-ASVAB Fonns 1 
and 2 were developed and calibrated by Prest
wood, Vale, Massey, and Welsh (1985). The P&P

ASV AB Fonn 8A was used to outline the content of 
items written in each area. However, important 
differences between the development of adaptive 
and conventional (paper-and-pencil) item pools 
were noted, which led to several modifications in 
P&P-ASVAB test specifications: 

• Increased range of item difficulties 
Domain specifications were expanded to provide 

additional easy and difficult items. 

• Functionally independent items 
The Paragraph Comprehension test (as mea

sured in P&P-ASVAB) typically contains reading 
passages followed by several questions referring to 
the same passage. Items of these types are likely 
to violate the assumption of local independence 
made by the standard unidimensional IRT model. 
Consequently, CAT-ASVAB items were written to 
have a single question per passage. 

• Unidimensionality 
In the P&P-ASVAB, auto and shop items are com

bined into a single test. However, to help satisfy 
the assumption of unidimensionality, Auto and 
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Shop Information were treated as separate con
tent areas: Large non-overlapping pools were writ
ten for each, and separate item calibrations were 
conducted. 

About 3,600 items (400 for each of the nine content 
areas) were written and pretested on a sample of 
recruits. The pretest was intended to screen about 
half of the items for inclusion in a large-sample 
item calibration study. Items administered in the 
pretest were assembled into 71 booklets, with each 
booklet containing items from a single content 
area. Examinees were given 50 minutes to com
plete all items in a booklet. Data from about 
21,000 recruits were gathered, resulting in about 
300 responses per item. IRT item parameters were 
estimated for each item using the ASCAL (Vale & 
Gialluca, 1985) computer program.' 

For each content area, a subset of items with 
an approximately rectangular distribution of item 
difficulties was selected for a more extensive cali
bration study. This was accomplished from an ex
amination of the IRT difficulty and discrimination 
parameters. Within each content area, items were 
divided into 20 equally spaced difficulty levels. Ap
proximately equal numbers of items were drawn 
from each level, with preference given to the most 
highly discriminating items. 

The surviving 2,118 items (about 235 items per 
content area) were assembled into 43 P&P test 
booklets, similar in construction to the pretest 
(each booklet containing items from a single con
tent area; 50 minutes of testing per examinee). 
Data from 137,000 applicants were collected from 
63 Military Entrance Processing Stations (MEPSS) 

and their associated Mobile Examining Team Sites 
(METSS) during late spring and early summer of 
1983. Each examinee was given one experimental 
form and an operational P&P-ASV AB. After match
ing booklet and operational ASVAB data, about 
116,000 cases remained for IRT calibration analy
sis (providing about 2,700 responses per item). 
Within each content area, all experimental and op
erational P&P-ASVAB items were calibrated jointly 
using the ASCAL computer program. This helped 
ensure that the item parameters were properly 
linked across booklets, and provided IRT esti
mates for several operational P&P-ASVAB forms on 
a common metric. 

I ASCAL is a joint maximum·likelihood/modal·Bayesian item 
calibration program for the three-parameter logistic item re
sponse model. 
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Table 11-1 Linking Design 

P&P-ASVAB Form 

Calibration 8A 8B 9A 9B lOA lOB lOX lOY 
Common Forms 

Primary 
Supplemental X 

X 
X 

Supplemental Item Bank 

X 
X 

X 
X 

X X 

An analysis of the primary item banks (described 
below) indicated that two of the content areas, Ar
ithmetic Reasoning (AR) and Word Knowledge 
(WK), had lower than desired precision over the 
middle ability range. Therefore, the item pools for 
these two content areas were supplemented with 
additional items taken from the experimental CAT

ASVAB system (166 AR items; and 195 WK items). 
The supplemental items were calibrated by Symp
son and Hartmann (1985) using a modified version 
of LOGIST 2.b. Data for these calibrations were ob
tained from a MEPS administration of P&P book
lets. Supplemental item parameters were trans
formed to the "primary item-metric" using the 
Stocking and Lord (1983) procedure. The linking 
design is shown in Table 11-1. 

The primary calibration included six P&P-ASVAB 

forms; the supplemental calibration included a 
different but overlapping set of six P&P-ASVAB 

forms. The two sets of parameters were linked 
through the four forms common to both calibra
tions: 9A, 9B, lOA, and lOB. The specific proce
dure involved the computation of two test charac
teristic curves (Tees), one based on the primary 
item calibration, and another based on the supple
mental item calibration. The linear transforma
tion of the supplemental scale that minimized the 
weighted sum of squared differences between the 
two Tees was computed. The squared differences 
at selected ability levels were weighted by a N(o, 1) 
density function. This procedure was repeated for 
both AR and WK. All AR and WK supplemental 
IRT discrimination and difficulty parameters were 
transformed to the primary metric, using the ap
propriate transformation of scale. 

Item Reviews 

Primary and supplemental items were screened 
using several criteria. First, an Educational Test
ing Service (ETS) panel performed sensitivity and 



quality reviews. The panel recommendations were 
then submitted to the Service laboratories for their 
comments. An Item Review Committee made up 
of NPRDC researchers reviewed the Service labo
ratories' and ETS reports and comments. When 
needed, the committee was augmented with addi
tional NPRDC personnel having expertise in areas 
related to the item content under review. The com
mittee reviewed the items and coded them as un
acceptable, marginally unacceptable, less than op
timal, and acceptable, in each of the two review 
categories (sensitivity and quality). 

Item keys were verified by an examination of 
point-biserial correlations, computed for each dis
tractor. Items with positive point-biserial corre
lations for incorrect options were identified and 
reviewed. 

The display suitability of the item screens was 
evaluated for: (a) clutter (particularly applicable 
to PC), (b) legibility, (c) graphics quality, (d) con
gruence of text and graphics (do words and pic
tures match?), and (e) congruence of screen and 
booklet versions. In addition, items on the Hew
lett Packard Integral Personal Computer (HP-IPC) 

screen were compared to those in the printed book
lets. Displayed items were also examined for: 
(a) words split at the end oflines (no hyphenation 
allowed), (b) missing characters at the end oflines, 
(c) missing lines or words, (d) misspelled words, 
and (e) spelling discrepancies within the booklets. 
After the items were examined on the HP-IPC, re
viewers presented their recommendations to a re
view group, which made final recommendations. 

Options Format Study 

The primary item pools for AR and WK consisted 
of multiple-choice items with five response alter
natives, while the supplemental items had only 
four alternatives. If primary and supplemental 
items were combined in a single pool, examinees 
would probably receive a mixture offour- and five
choice items during the adaptive test. There was 
concern that mixing items with different numbers 
of response options within a test would cause con
fusion or careless errors by the examinee, and per
haps affect item difficulties. 

The authors conducted a study to examine the 
effect of mixing four- and five-option items on 
computerized test performance. Examinees in this 
study were 1,200 male Navy recruits at the Recruit 
Training Center, San Diego, California. The task 
for each examinee was to answer a mixture of 4-

and 5-option items. These included 32 WK items 
followed by 24 PC items administered by computer 
using a conventional nonadaptive strategy. 

Subjects were randomly assigned to one of six 
conditions. Specific items administered in each 
condition for WK are displayed in Table 11-2. Ex
aminees assigned to Conditions A or B received 
items of one type exclusively: Examinees assigned 
to Condition A received items 1-32 (all 5-option 
items), examinees assigned to Condition B re
ceived items 33-64 (all 4-option items). Items in 
Conditions A and B were selected to span the 
range of difficulty. Note that 4- and 5-option items 
were paired {l,331, 12,341, 13,351, ... so that items 
in the same position in the linear sequence would 
have similar item response functions (and conse
quently similar difficulty and discrimination lev
els). Examinees assigned to Condition C received 
alternating sequences of 5- and 4-choice items (5, 
4, 5, 4, ... ). Examinees assigned to Condition D 
received a test in which every fourth item was a 4-
option item (5, 5, 5, 4, 5, 5, 5, 4, ... .). In Condition 
E, every 8th item administered was a 4-option 
item. Finally, in Condition F, an equal number of 
randomly selected 4- and 5-option items were ad
ministered to each examinee. The first item ad
ministered was randomly selected from {lor 331, 
the second item was selected from 12 or 341, etc. 
An example assignment for this condition is given 
in the last column of Table 11-2. Note for this con
dition, assignments were generated independently 
for each examinee. An identical design was used 
for PC, except that only 24 items were adminis
tered to each examinee. Three different outcome 
measures were examined to assess the effects of 
mixing item formats: item difficulty, test difficulty, 
and response latency. 

Item difficulty. For Conditions C, D, E, and F, 
item difficulties (proportion of correct responses) 
were compared with those of the corresponding 
items in the Control Conditions (A or B). For ex
ample, comparison of difficulty values in Condi
tion C included pairs: ICondition C, Item 11 with 
ICondition A, Item 11; ICondition C, Item 341 with 
ICondition B, Item 341; etc. The significance of the 
difference between pairs of item difficulty values 
were tested using a 2 x 2 chi-square analysis. For 
WK, only seven of the 160 comparisons (about 
4.4%) produced significant differences (at the .05 
alpha level). For PC, only one of the 120 compari
sons of item difficulty was significant. 

Test difficulty. For examinees in Condi
tions C, D, and E, two number-right scores were 
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Table 11·2 Options Format Study: WI< Item Lists Presented in Control and Experimental Conditions 

Control 

Condition A ConditionB ConditionC 
(5-0ption) (4-0ption) (Mixed: 1: 1) 

1 33 1 
2 34 34 
3 35 3 
4 36 36 
5 37 5 
6 38 38 
7 39 7 
8 40 40 
9 41 9 

10 42 42 
11 43 11 
12 44 44 
13 45 13 
14 46 46 
15 47 15 
16 48 48 
17 49 17 

18 50 50 
19 51 19 
20 52 52 
21 53 21 
22 54 54 
23 55 23 
24 56 56 
25 57 25 
26 58 58 
27 59 27 

28 60 60 
29 61 29 

30 62 62 

31 63 31 
32 64 64 

computed: One based on 4-option items, and an
other based on 5-option items. Number-right 
scores from corresponding items were computed 
for examinees in the Control conditions A and B. 
The number of items entering into each score for 
each condition are displayed in the second and 
fifth columns of Table 11-3. The significance of the 
difference between mean number· right scores 
across the Experimental and Control groups was 
tested using an independent groups t statistic. 
The results are displayed in Table 11·3. None of 
the comparisons displayed significant results at 
the .05 alpha level. 
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Experimental 

ConditionD ConditionE ConditionF 
(Mixed: 3: 1) (Mixed: 7: 1) (Random: 1: 1) 

1 1 1 

2 2 2 

3 3 3 

36 4 36 

5 5 37 

6 6 6 

7 7 39 

40 40 40 

9 9 41 

10 10 10 

11 11 43 

44 12 12 

13 13 13 

14 14 14 

15 15 47 

48 48 16 

17 17 49 

18 18 50 
19 19 51 

52 20 20 

21 21 21 
22 22 54 

23 23 55 
56 56 24 
25 25 57 
26 26 58 
27 27 27 
60 28 28 
29 29 29 
30 30 30 
31 31 63 
64 64 64 

Response latencies. For examinees in Condi
tions C, D, and E, two latency measures were com
puted: One based on 4-option items, and another 
based on 5·option items. Latency measures were 
also computed from corresponding items in the 
Control conditions A and B. Mean latencies were 
compared across the Experimental and Control 
groups (Table 11·3). None of the comparisons dis· 
played significant results at the .05 alpha level. 

Discussion. Mixing items with different num
bers of response options produced no measurable 
effects on item or test performance. This result 



Table 11-3 Options Fonnat Study: Significance Tests for Test Difficulties and Response Latencies 

Word Knowledge Paragraph Comprehension 

t-value t-value 

Condition No. Items Difficulty Latency No. Items Difficulty Latency 

Comparison With 5-0ption Control 

ConditionC 
ConditionD 
ConditionE 

16 
24 
28 

.06 -.85 
-1.09 .47 
-.24 -.98 

12 -.08 -1.77 
18 -.21 -.64 
21 -1.82 .67 

Comparison With 4-0ption Control 

ConditionC 
ConditionD 
ConditionE 

16 
8 
4 

-1.83 
-1.35 

1.35 

differed from those reported by Brittain and 
Vaughan (1984), who studied the effects of mixing 
items with different numbers of options on a P&P 
version of the Army Skills Qualification Test. They 
predicted errors would increase when an item 
with n answer options followed an item with more 
than n answer options, where errors were defined 
as choosing nonexistent answer options. Consis
tent with their hypothesis, mixing items with dif
ferent numbers of answer options caused an in
crease in errors. 

Likely explanations for the different findings 
between the current study and the Brittain and 
Vaughan (1984) study involve differences in me
dium (computer versus P&P). In the Brittain and 
Vaughan study, examinees answered questions us
ing a standard 5-option answer sheet for all items, 
making the selection of a nonexistent option pos
sible. However, in the current study, software fea
tures were employed which helped eliminate er
roneous responses. (These software features are 
common to both the current study and the CAT

ASV AB system.) 
First, after the examinee makes a selection 

among response alternatives, he or she is required 
to confirm the selection. For example, if the exam
inee selects option "D," the system responds with: 

If "D" is your answer press ENTER. 
Otherwise, type another answer. 

That is, the examinee is informed about the selec
tion that was made, and given an opportunity to 
change the selection. This process would tend to 
minimize the likelihood of careless errors. 

A second desirable feature incorporated into the 
CAT-ASVAB software (and included in the options 

1.49 12 1.30 -.72 
1.84 6 -.98 -1.92 
-.07 3 -1.40 -.28 

format study) was the sequence of events following 
an "invalid-key" press. Suppose, for example, that 
a particular item had only four response alterna
tives (A, B, C, and D) and the examinee selects 
"E" by mistake. The examinee would see the 
messages: 

You DID NOT type A, B, C, or D. 
Enter your answer (A, B, C, or D) 

Note that if an examinee accidentally selects a 
nonexistent option (i.e., "E"), the item is not scored 
incorrect; instead, the examinee is given an op
portunity to make another selection. This feature 
would also reduce the likelihood of careless errors. 
These software features, along with the empirical 
results of the options format study, addressed the 
major concerns about mixing four- and five-choice 
items. 

Dimensionality 

One major assumption of the IRT item selection 
and scoring procedures used by CAT-ASVAB is that 
performance on items within a given content area 
can be characterized by a unidimensional latent 
trait or ability. Earlier research showed that IRT 
estimation techniques are robust against minor 
violations of the unidimensionality assumption, 
and that unidimensional IRT parameter estimates 
have many practical applications in multidimen
sional item pools (Reckase, 1979; Drasgow & Par
sons, 1983, Dorans & Kingston, 1985). However, 
violations of the unidimensional adaptive testing 
model may have serious implications for validity 
and test fairness. Because of the adaptive nature 
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Table 11-4 Treatment Approaches for Multidimensional Item Pools 

Approach 

1. Unidimensional 
Treatment 

2. Content Balancing 

3. Pool Splitting 

Calibration 

Combined calibration 
containing items of 
each content type 

Combined calibration 
containing items of 
each content type 

Separate calibrations for 
items of each content 

of the test, and the IRT scoring algorithms, multi
dimensionality may lead to observed scores which 
represent a different mixture of the underlying 
unidimensional constructs than intended. This 
could alter the validity of the test. Furthermore, 
the application of the unidimensional model to 
multidimensional item pools may produce differ
ences in the representation of dimensions among 
examinees. Some examinees may receive items 
measuring primarily one dimension, while others 
receive items measuring another d~mension. This 
raises issues of test fairness. If the pool is multi
dimensional, two examinees (with the same abil
ity levels) may be administered items measuring 
two largely different constructs, and receive widely 
discrepant scores. 

In principle, at least three approaches exist for 
dealing with multidimensional item pools (Table 
11-4). These approaches differ in the item selec
tion and scoring algorithms, and in the item cali
bration design: 

1. Unidimensional Treatment. This option es
sentially ignores the dimensionality of the item 
pools in terms of item calibration, item selection, 
and scoring. A single item calibration containing 
items spanning all content areas is performed to 
estimate the IRT item parameters. No content con
straints are placed on the selection of items during 
the adaptive sequence-items are selected on the 
basis of maximum information. Intermediate and 
final scoring are performed according to the uni
dimensional IRT model, and a single score is ob
tained based on items spanning all content areas. 
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Item Selection 

No constraints placed on 
item content for each 
examinee 

Constraints placed on the 
number of items drawn 
from each content area 
for each examinee 

Separate adaptively 
tailored tests for each 
content area 

Scoring 

A single IRT ability 
estimate computed 
across items of 
different content using 
the unidimensional 
scoring algorithm 

A single IRT ability 
estimate computed 
across items of 
different content using 
the unidimensional 
scoring algorithm 

Separate IRT ability 
estimates for each 
content area 

2. Content Balancing. This approach balances 
the numbers of administered items from targeted 
content areas. A single item calibration containing 
items spanning all content areas is performed to 
estimate the IRT item parameters. During the 
adaptive test, items are selected from content· 
specific sub pools in a fixed sequence. For example, 
the content balancing sequence for General Sci
ence could be LPLPLPLPLPLPLPL (L = Life Sci
ence, P = Physical Science). Accordingly, the first 
item administered would be selected from among 
the candidate Life Science items. The second item 
administered would be selected from the physical 
science items, and so forth. Within each targeted 
content area, items are selected on the basis ofIRT 
item information. Intermediate and final scores 
are based on the unidimensional ability estimator 
computed from items spanning all content areas. 

3. Pool Splitting. Item pools for different dimen
sions are constructed and calibrated separately. 
For each content area, separate adaptive tests are 
administered and scored. It is then usually neces
sary to combine final scores on the separate adap
tive tests to form a single composite measure that 
spans the separately measured content areas. 

For each item pool, a number of criteria were con
sidered in determining the most suitable dimen
sionality-approach, including: (a) statistical fac
tor significance, (b) factor interpretation, (c) item 
difficulties, and (d) factor intercorrelations. The 
relation between these criteria and the recom
mended approach is summarized in Table 11-5. 



Table 11-5 Decision Rules for Approaches to Dimensionality 

Statistical Interpretable Overlapping Item Factor 
Case FactorSig. Factors Difficulties Correlations Approach 

1. No 
2. Yes Yes 
3. Yes Yes 
4. Yes Yes 
5. Yes No 
6. Yes No 

Statistical Factor Significance 

The first, and perhaps most important criterion 
for selecting the dimensionality-approach is the 
factor structure ofthe item pool. If there is empiri
cal evidence to suggest that responses of an item 
pool are multidimensional, then content-balanc
ing or pool-splitting should be considered. In the 
absence of such evidence, item pools should be 
treated as unidimensional. Such empirical evi
dence can be obtained from factor analytic studies 
of item responses using one of several available ap
proaches, including TESTFACT (Wilson, Wood, & 
Gibbons, 1991) and NOHARM (Fraser, 1988). The 
full item-information procedure used in TESTFACT 

allows the statistical significance of multidimen
sional solutions to be tested against the unidimen
sional solution using a hierarchical likelihood ra
tio procedure. 

This strong empirical emphasis recommended 
here is not shared by all adaptive testing pro
grams. The adaptive item selection algorithm 
used in the CAT-GRE (Stocking & Swanson, 1993) 
incorporates both item information and test plan 
specifications. The test plans are based on expert 
judgments of content specialists. Accordingly, 
there is likely to be a disconnect between the test 
plan specifications and the empirical dimension
ality of the item pools. This can lead to situations 
where constraints are placed on the presentation 
of items that are largely unidimensional. In gen
eral, overly restrictive content-based constraints 
on item selection will lead to the use of less in
formative items, and ultimately to test scores with 
lower precision. 

Factor Interpretation 

According to a strictly empirical approach, the 
number of factors could be determined by statisti-

Unidimensional 
Yes High ContentBal. 
Yes Low Split Pool 
No Unidimensional 
Yes Unidimensional 
No Unidimensional 

cal considerations, and items could be allocated 
to areas based on their estimated loadings. Items 
could be balanced with respect to these areas de
fined by the empirical analysis. However, a major 
drawback with this approach is the likelihood of 
meaningless results, both in terms of the number 
of factors to be balanced, and in the allocation of 
items to content areas. Significance tests applied 
to large samples would almost certainly lead to 
high-dimensionality solutions, regardless of the 
strength of the factors. Furthermore, there is no 
guarantee that the rotated factor solution accu
rately describes the underlying factors. 

The alternative judgmental approach noted 
above would divide the pool into areas on the basis 
of expert judgments. The major problem with this 
approach is that without an examination of em
pirical data, it is not possible to determine which 
content areas affect the dimensionality ofthe pool. 
Choice of content areas could be defined at several 
arbitrary levels. As Green et al. (1982) suggest, 
''There is obviously a limit to how finely the con
tent should be subdivided. Each item is to a large 
extent specific." 

In CAT-ASVAB development, we formed a decision 
rule based on a compromise between the empirical 
and judgmental approaches. If a pool was found 
to be statistically multidimensional, items load
ing highly on each factor were inspected for simi
larity of content. If agreement between factor 
solutions and content judgments was high, then 
balancing was considered, otherwise balancing 
was not considered. 

Item Difficulties 

Another important criterion for selecting among 
dimensionality-approaches concerns the overlap 
of item difficulties associated with items of each 
content area. The overlap of item difficulties can 
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provide some clues about the causes of the di
mensionality, and suggest an appropriate remedy. 
Lord (1977) makes an important observation: 

Suppose, to take an extreme example, cer
tain items in a test are taught to one group 
of students and not taught to another, while 
other items are taught to both groups. This 
way of teaching increases the dimensionality 
of whatever is measured by the test. If items 
would otherwise have been factorially unidi
mensional, this way ofteaching will introduce 
additional dimensions. (p. 24) 

If a pool contains some items with material ex
posed to the entire population (say nonacademic 
content), and other items are taught to a subpopu
lation (in school-academic content), then we 
would expect to find statistically significant fac
tors with easy items loading on the nonacademic 
factor, and moderate to difficult items loading 
on the academic factor. Application of the unidi
mensional item selection and scoring algorithms 
would result in low ability test-takers receiving 
easy (nonacademic) items, and moderate to high 
ability test-takers receiving academic items. Thus 
the unidimensional treatment would appropriately 
tailor the content of the items according to the 
standing of the test-taker along the latent dimen
sion. Note that content balancing in this situation 
could substantially reduce the precision of the test 
scores. For example, if an equal number of items 
from each content area were administered to each 
examinee, then low ability examinees would re
ceive a large number of uninformative difficult 
items; and conversely, high ability examinees 
would receive a large number of uninformative easy 
items. 

We would expect to observe a different pattern 
of item difficulty values if substantially non-over
lapping subgroups were taught different material. 
In this instance, we would expect to observe two or 
more factors defined by items with overlapping 
difficulty values (falling within a common range). 
Here, an appropriate remedy would involve con
tent balancing or pool-splitting, since different di
mensions represent knowledge of somewhat inde
pendent domains. 

Factor Correlations 

A final consideration for selecting among dimen
sionality-approaches concerns the magnitude of 
the correlation between latent factors. Different 
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approaches might be desirable depending on the 
correlation between factors estimated in the item 
factor analysis. If factors are highly correlated, 
then content balancing may provide the most sat
isfactory results. In this instance, the unidimen
sional model used in conjunction with content 
balancing is likely to provide an adequate approxi
mation for characterizing item information, and 
for estimating latent ability. 

If the correlations among factors are found to 
be low or moderate, then the usefulness of the uni
dimensional model for characterizing item infor
mation and estimating latent abilities is ques
tionable. When the factors have low correlations, 
pool-splitting is likely to provide the best remedy. 
Separate IRT calibrations should be performed for 
items of each factor; separate adaptive tests should 
be administered; and final adaptive test scores can 
be combined to form a composite measure repre
senting the standing among examinees along the 
latent composite dimension. 

Choosing Among Alternative Approaches 

Table 11-5 summarized different possible out
comes and the recommended approach for each. If 
an item factor analysis provides no significant sec
ond, or higher order factors, then the pool should 
be treated as unidimensional (Case 1). If statisti
cally significant higher order factors are identi
fied, these factors relate to item content, and item 
difficulties of each content span a common range, 
then consideration should be given to content bal
ancing (Case 2, if the factor intercorrelations are 
high), or to pool-splitting (Case 3, if the factor in
tercorrelations are low to moderate). For reasons 
given above, if the statistical factors are not inter
pretable (Case 5 and 6), or if the item difficulty 
values of each content area span non-overlapping 
ranges (Case 4 and 6), then unidimensional treat
ment may provide the most useful approach. 

Results and Discussion 

In earlier studies of the Auto-Shop content area, a 
decision was made to apply the pool-splitting ap
proach: This content area was split into separate 
auto and shop item pools (Case 3, Table 11-5). As 
described in an earlier section, these pools were 
calibrated separately. The decision to split these 
pools was based on the moderately high correla
tion among the auto and shop dimensions. In the 
analysis described below, the auto and shop pools 



were examined separately, and subjected to the 
same analyses as other pools. 

The first step in the dimensionality analysis in
volved factor analyses using item data <Prestwood 
et al., 1985). Empirical item responses were ana
lyzed using the TESTFACT computer program (Mu
raki, 1984), which employs full information item 
factor analysis based on IRT (Bock & Aitkin, 1981). 
While the program computes item difficulty and 
item discrimination parameters, guessing param
eters are treated as known constants and must 
be supplied to the program. For these analyses, 
the guessing parameters estimated by Prestwood 
et al., were used. For all analyses, a maximum 
of four factors were extracted, using a stepwise 
procedure. An item pool was considered statisti
cally multidimensional if a change in chi-square 
(between the one-factor solution and the two-factor 
solution) was statistically significant (at the .01 
alpha level). If the change in chi-square for the 
two-factor solution was significant, the three- and 
four-factor solutions were also examined for sig
nificant changes in chi-square. Since items within 
a pool were divided into separate booklets for data 
collection purposes, all items within a pool could 
not be factor analyzed at once. Therefore, subsets 
of items (generally, all items in one booklet) were 
analyzed. The number of statistically significant 
factors found across booklets was not necessarily 
identical. In such cases, the factor solutions exam
ined were the number found in the majority ofthe 
booklets. The number of statistically significant 
factors found for each item pool is summarized in 

Table 11·6 Dimensionality OfCAT-ASVAB Item Pools 

Table 11·6. For those item pools showing statisti
cal evidence of multidimensionality, items were re
viewed to determine whether the pattern of factor 
loadings was related to content, mean difficulty 
parameters were computed by content area, and 
factor intercorrelations were examined. These re
sults are displayed in Table 11-6. 

Based on the factor analyses, PC and MC were 
found to be unidimensional (Case 1, Table 11-5). 
All other item pools were multidimensional, with 
GS and MK having four factors and AR, WK, AI, 
SI, and EI having two factors. For those areas hav
ing two factors, the pattern of factor loadings was 
readily apparent. Items that loaded highly on the 
first factor were nonacademic items (Le., taught 
to the whole group through everyday experiences). 
Items that loaded highly on the second factor were 
academic items (Le., taught to a subgroup through 
classroom instruction or specialized experience). 
Means of IRT difficulty parameters for academic 
and nonacademic items are displayed in Table 11-7. 
As indicated, the mean difficulty values for non
academic items were much lower than those for 
academic items. Accordingly, AR, WK , AI, SI, 
and EI were treated as unidimensional item pools 
(Case 4, Table 11-5). 

The GS pool appeared, in part, to follow a differ
ent pattern than the five pools discussed above. An 
examination of the factor solutions and item con
tent provided some evidence for a four-factor solu
tion interpreted as (a) nonacademic, (b) life sci
ence, (c) physical science, and (d) chemistry. This 
interpretation is supported by the fact that many 

No. Overlapping . 

Item Pool 

GS 
AR 
WK 
PC 
AI 
SI 
MK 
MC 
EI 

Significant Interpretable Item Factor 
Factors Factors Difficulties Correlations Case Approach 

4 Yes Yes High 2 ContentBal. 
2 Yes No 4 Unidimensional 
2 Yes No 4 Unidimensional 
1 1 Unidimensional 
2 Yes No 4 Unidimensional 
2 Yes No 4 Unidimensional 
4 No Yes 5 Unidimensional 
1 1 Unidimensional 
2 Yes No 4 Unidimensional 

Table 11·7 Mean IRT Item Difficulty (b) Parameters 

Item Content 

Nonacademic 
Academic 

AR 

-2.37 
.30 

WK 

-2.30 
.47 

AI 

-2.28 
.48 

SI 

-2.15 
.57 

EI 

-1.51 
.61 
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Table 11·8 Item Pools Evaluated in Precision Analyses 

Target 
Content Exposure 

Condition Area Label Form Supplemented Rate 

1 GS GS·1 1 No 1/3 
2 GS GS·2 2 No 1/3 
3 AR AR·1 1 No 1/6 
4 AR AR-2 2 No 1/6 
5 AR AR.-1 1 Yes 1/6 
6 AR AR.-2 2 Yes 1/6 
7 WK WK-1 1 No 1/6 
8 WK WK-2 2 No 1/6 
9 WK WK.-1 1 Yes 1/6 

10 WK WK.-2 2 Yes 1/6 
11 PC PC-1 1 No 1/6 
12 PC PC-2 2 No 1/6 
13 AI AI-I 1 No 1/3 
14 AI AI-2 2 No 1/3 
15 SI SI-1 1 No 1/3 
16 SI SI-2 2 No 1/3 
17 MC MC-1 1 No 1/3 
18 MC MC·2 2 No 1/3 
19 MK MK-1 1 No 1/6 
20 MK MK·2 2 No 1/6 
21 EI EI-1 1 No 1/3 
22 EI EI-2 2 No 1/3 

GifeScienV < ." ---QonacademJe ~chemistIY::> 
ba 1.79 6- i.26 

<!iisical Scie!;:> 
6=.61 

Levell Level 2 Levell 

Figure 11-1 
General Science Dual Track Instruction. 

high schools offer a multiple-track science pro
gram (Figure 11-1). At Levell, students have little 
or no formal instruction. At Level 2, some students 
receive training in life science, while others re
ceive physical science training. Finally, at Level 3, 
some members of both groups are instructed in 
chemistry. Notice that each higher level contains 
only a subset of students contained in the levels 
directly below it. For example, not everyone com
pleting a life science or a physical science course 
will receive instruction in chemistry. The mean 
IRT item difficulty values (displayed in Figure 11-
1) also support this interpretation of dimension-
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ality. The life science and physical science items 
are of moderate (and approximately equal) diffi
culty. The chemistry items appear to be the most 
difficult, and nonacademic items least difficult. 
These findings are supportive balancing content 
among life and physical science items (Case 2, 
Table 11-5). Nonacademic and chemistry items 
should be administered to examinees of appropri
ate ability levels. (See Chapter 12 for additional 
details on the GS content balancing algorithm.) 

For MK, the pattern of factor loadings associ
ated with the two-, three-, or four-factor solutions 
could not be associated with item content. Conse-



quently, the MK item pool was treated as unidi
mensional (Case 5, Table 11-5). 

Alternate Forms 

In developing the item pools for CAT-ASVAB, it 
was necessary to create two alternate test forms 
so that applicants could be retested on another 
form of CAT-ASVAB. Once the item screening pro
cedures were completed, items within each con
tent area were assigned to alternate pools. Pairs 
of items with similar information functions were 
identified, and assigned to alternate pools. The 
primary goal of the alternate form assignment 
was to minimize the weighted sum-of-squared dif
ferences between the two pool information func
tions. (A pool information function was computed 
from the sum of the item information functions.) 
The squared differences between pool information 
functions were weighted by a N(O,l) density. 

The procedure used to create the GS alternate 
forms differed slightly from the other content 
areas because of the content balancing require
ment. GS items were first divided into physical, 
life, and chemistry content areas. Domain specifi
cations provided by Prestwood, Vale, Massey, & 
Welsh (1985) were used for assignment to these 
content areas. Once items had been assigned to a 
content area, alternate forms were created sepa
rately for each of the three areas. 

Precision Analyses 

Precision is an important criterion for judging 
the adequacy of the items pools, since it depends 
in large part on the quality of the pools. Preci
.sion analyses were conducted separately for the 
22 item pools displayed in Table 11-8. The content 
area and form are listed in columns two and four. 
The target exposure rate (for the battery, i.e, 
across the two forms) is provided in the last col
umn. This target was used to compute exposure 
control parameters according to the Sympson
Hetter algorithm (Chapter 13). The fifth column 
shows whether the pool included supplemental 
items. The third column provides a descriptive la
bel for each condition used in the text and tables. 

As would be expected, the results of any preci
sion analysis would show various degrees ofpreci
sion among the CAT-ASVAB tests. But how much 
precision is enough? The precision of the P&P-

ASVAB offers a useful baseline. It is desirable for 
CAT-ASV AB to match or exceed P&P-ASV AB precision. 
Accordingly, precision criteria were computed for 
both P&P-ASVAB and CAT-ASVAB. 

It is important to evaluate the impact of using 
the CAT-ASVAB item selection and scoring algo
rithm on precision, since the precision of adaptive 
test scores depends on both, the quality of the 
item pools, and on the adaptive testing proce
dures. The specific item selection and scoring pro
cedures used are described in Chapter 12. For 
each adaptively administered test, the precision of 
the Bayesian modal estimate was evaluated. For 
each item pool, two measures of precision were ex
amined: (a) score information, and (b) reliability. 

Score Information 

Score information functions provide one criterion 
for comparing the relative precision of the CAT

ASVAB with the P&P-ASVAB. Birnbaum (1968, Sec
tion 17.7) defines the information function for any 
scorey to be 

(fo~Y,·r 
110, yl == Var(yIO) . (11-1) 

This function is by definition inversely propor
tional to the square ofthe length of the asymptotic 
confidence interval for estimating ability 0 from 
score y. For each content area, information func
tions can be compared between the CAT-ASVAB 

and the P&P-ASVAB. The test with greater informa
tion at a given ability level will possess a smaller 
asymptotic confidence interval for estimating o. 

CAT-ASVAB score information functions. 
The score information functions (SIFs) for each 
CAT-ASVAB item pool were approximated from 
simulated test sessions. For a given pool, simula
tions were repeated independently for 500 exam
inees at each of 31 different o levels. These o levels 
were equally spaced along the [-3, +3] interval. 
At each 0 level, the mean m and variance 8 2 of the 
500 final scores were computed. The information 
function at each selected level of 0 can be approxi
mated from these results, using (Lord, 1980a, eq. 
10-7) 

110 81 = [m(810+1) - m(8~8_1)]2 
, (0+ 1 - 0_ 1)28 2(0180 ) , 

(11-2) 

where 0_ 10 00 , 0+ 1 represent the successive levels 
of o. However, the curve produced by this approxi-
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mati on often appears jagged, with many local 
variations. To reduce this problem, information 
was approximated by 

liB, 01 = 

[ m(OIB+1); m(OIB+2) _ m(0IB_1); m(0IB_2)T 

[B+1; B+2 _ B_1 ; B-2]l~L:~_2S(8IB)T 
(11-3) 

where B-2' B-1' Bo, B+" B+2 represent successive 
levels of B. This approximation results in a moder
ately smoothed curve with small local differences. 

P&P-ASVAB Score information functions. 
The P&P-SIF for a number right score x was com
puted by (Lord, 1980a, eq. 5-13) 

[~p:(B)T 
/lB, xl = -n---

L Pi(B)Q;(8) 
;=1 

(11-5) 

This function was computed for each content area 
by substituting the estimated P&P-ASVAB (9A) pa
rameters for those assumed to be known in Equa
tion (11-5). 

A special procedure was used to compute SIF for 
AS since this test is represented by two tests in 

CAT-ASVAB. The AS-P&P (9A) test was divided into 
AI and SI items. SIFs (eq. 11-5) were computed 
separately for these AI-P&P and SI-P&P items to 
simplify comparisons with the corresponding CAT
ASVAB SIFs. Parameters used in the computation 
of these SIFs were taken from the joint calibra
tions ofp&P-ASVAB and CAT-ASVAB items. In these 
calibrations, AS-P&P items were separated and 
calibrated among CAT-ASVAB items of correspond
ing content (Le., AI-P&P items were calibrated with 
AI-CAT, and SI-P&P with SI-CAT items). However, two 
AS-P&P (9A) items appeared to overlap in AIISI 
content, and appeared in both AI and SI calibra
tions. For computations of score information, these 
two items were included in both AI-P&P and SI-P&P 
information functions.This represents a conserva
tive approach (favoring the P&P-ASVAB), since we 
are counting these two items twice in the compu
tations of the P&P-ASVAB SIFs. 

Score information results. CAT-ASVAB SIFs 
were computed for each of the 22 conditions listed 
in Table 11-8. For comparison, the P&P-ASVAB SIF 
(for 9A) was computed. The SIFs for the CAT-ASVAB 
equaled or exceeded the P&P-ASVAB SIFs for all but 
four conditions: 3, 4, 7, and 8. These four excep
tions involved the two pools of AR and WK that 
consisted of only primary items. When these pools 
were supplemented with additional items (see con
ditions 5, 6, 9, and 10) the resulting SIFs equaled 
or exceeded the corresponding P&P-ASV AB SIFs. 

Table 11-9 lists the number of items used in se
lected SIF analyses. The number of times (across 
simulees) that an item was administered was re
corded for each SIF simulation. The values in 
Table 11-9 represent the number of items that 
were administered at least once during the 15,500 
simulated test sessions. A separate count for pri-

Table 11-9 Number of Used Items in CAT-ASVAB Item Pools 

Number of Used Items 

Form 1 Form 2 

Content Exposure 
Area Rate Primary Supp. Total Primary Supp. Total 

GS 113 72 72 67 67 
AR 116 62 32 94 53 41 94 
WI{ 116 61 34 95 55 44 99 
PC 116 50 50 52 52 
AI 113 53 53 53 53 
SI 113 51 51 49 49 
MK 116 84 84 85 85 
MC 113 64 64 64 64 
EI 113 61 61 61 61 
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mary and supplemental items is provided for AR 
and WK. 

Reliability 

A reliability index provides another criterion for 
comparing the relative precision of the CAT-ASVAB 

with the P&P-ASVAB. These indices were computed 
for each pool and for one form (9A) of the P&P

ASVAB. The reliabilities were estimated from simu
lated test sessions: 1,900 values were sampled 
from aN(O,l) distribution. Each value represented 
the ability level of a simulated examinee (simu
lee). The simulated tests were administered twice 
to each ofthe 1,900 simulees. The reliability index 
was the correlation between the pairs of Bayesian 
modal estimates of ability from the two simulated 
administrations. The CAT-ASVAB reliabilities were 
computed separately for each pool. The item selec
tion and scoring procedures match those used in 
CAT-ASVAB (Chapter 12). 

The P&P-ASVAB reliabilities were computed from 
simulated administrations of Form 9A. The follow
ing procedure was used to generate number right 
scores for each of the 1,900 simulees: 

STEP 1: The probability of a correct response to 
a given item was obtained for a simulee by substi
tuting the (9A) item parameter estimates and the 
simulee's ability level into the three-parameter lo
gistic model. 

STEP 2: A random uniform value in the interval 
[0,1] was generated and compared to the proba
bility of a correct response. If the random number 
was less than the probability value, the item was 
scored correct; otherwise it was scored incorrect. 

STEP 3: Steps 1 and 2 were repeated across test 
items for each simulee. The number right score 
was the sum of the responses scored correct. 

Steps 1 through 3 were repeated twice to obtain 
two number-right scores for each simulee. The re
liability index for the P&P-ASVAB was the correla
tion between the two number-right scores. 

A special procedure was used to compute reli
ability indices for AS. These items on the P&P 
version (9A) were divided into two components: 
AI and SI. This split corresponded to the assign
ment made in the item calibration of these content 
areas. A reliability index was computed separately 
for each component. 

Reliability indices were computed for each of the 
22 conditions and are listed in Table 11-10. For 

Table 11-10 Simulated Reliabilities (N = 1,900) 

Test Exposure 
Test Form Length Rate Reliability r 

GS CAT-l 15 1/3 .902 
CAT-2 15 113 .900 
ASVAB-9A 25 .835 

AR CAT.-l 15 116 .924 
CAT.-2 15 116 .924 
CAT-l 15 1/6 .904 
CAT-2 15 116 .903 
ASVAB-9A 30 .891 

WK CAT.-l 15 116 .934 
CAT.-2 15 116 .936 
CAT-l 15 116 .912 
CAT-2 15 116 .913 
ASVAB-9A 35 .902 

PC CAT-l 10 116 .847 
CAT-2 10 116 .855 
ASVAB-9A 15 .758 

AI CAT-l 10 113 .894 
CAT-2 10 113 .904 
ASVAB-9A 17 .821 

SI CAT-l 10 113 .874 
CAT-2 10 113 .873 
ASVAB-9A 10 .651 

MK CAT-l 15 116 .933 
CAT-2 15 116 .935 
ASVAB-9A 25 .854 

MC CAT-l 15 113 .886 
CAT-2 15 113 .897 
ASVAB-9A 25 .807 

EI CAT-l 15 113 .875 
CAT-2 15 113 .873 
ASVAB-9A 20 .768 

comparison, the P&P-ASVAB reliability (for 9A) was 
computed and displayed in the same table. Expo
sure rates and test lengths are also provided. The 
estimated CAT-ASVAB reliability indices exceeded 
the corresponding P&P-ASVAB (9A) values for all 22 
conditions. 

Summary 

The procedures described in this chapter formed 
the basis of the item pool construction and evalua
tion procedures. Large item pools were pretested 
and calibrated in large samples of applicants. Two 
item pools (WK and AR) were supplemented with 
additional items, and a special study was con
ducted to evaluate adverse consequences of mixing 
4-option supplemental items with other 5-option 
items. Extensive analyses were conducted to evalu
ate each pool's dimensionality. For pools found to 
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be multidimensional, these analyses aided in se
lecting the most appropriate approach for item 
selection and scoring. Finally, extensive precision 
analyses were conducted to evaluate the condi
tional and unconditional precision levels of the 
item pools, and to compare these precision levels 
with the P&P-ASVAB. 

Based on the score information analyses, the 
precision for the primary AR and WK pools over 
the middle ranges of ability. was inadequate. By 
supplementing these pools with experimental CAT

ASVAB items, the precision was raised to an accept
able level. Why was it necessary to supplement 
these pools, and what lessons can be applied to the 
construction of future pools? 

One clue comes from the distribution of diffi
culty parameters obtained from surviving items 
(those items in the pools that have a greater than 
zero probability of administration). An examina
tion of this distribution indicates a bell shaped dis
tribution, with a larger number of difficulty values 
appearing over the middle ranges, and fewer val
ues appearing in the extremes. Note that the tar
get difficulty distribution for item writing and for 
inclusion in the calibration study was a uniform 
distribution. This suggests that there were actu
ally an excess of items in the extremes (which 
had zero probabilities of administration), and for 
WK and AR, a deficiency of items over the middle 
ranges. Future development efforts should attempt 
to construct banks of items with bell shaped distri
butions of item difficulty values, similar to those 
constructed for P&P tests. 
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A bell shaped distribution of item difficulties has 
at least two desirable properties for CAT. First, 
larger numbers of items with moderate difficulty 
values are likely to lead to higher precision over 
the middle range, since the adaptive algorithm is 
likely to have more highly discriminating items to 
choose from. This may be especially desirable if it 
is important to match the precision of a P&P test 
which peaks in information over the middle ability 
ranges. Second, the Sympson-Hetterexposurecon
trol algorithm (Chapter 13) places demands on 
moderately difficult items, since the administra
tion of these items is restricted. Because of the 
restrictions placed on these items, more highly in
formative items of moderate difficulty are neces
sary to maintain high levels of precision. 

Although CAT-ASVAB precision analyses indi
cated favorable comparisons with the P&P-ASVAB, 

many strong assumptions were made in the simu
lation analyses which may limit applicability of 
these findings to operational administrations with 
real test-takers. Such assumptions (including un
idimensionality, local independence, and knowl
edge of true item functioning) are almost certainly 
violated to some extent in applied testing situa
tions. Therefore, it is important to examine the 
precision of these pools with live test-takers who 
are administered tests using the same adaptive 
item selection and scoring algorithms evaluated 
here. Such an evaluation is described in Chap
ter 17. 
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