

# **Computational Thinking**

Kimberly Adams and Scott Oppler Human Resources Research Organization

Briefing presented to the DACMPT January 22, 2025

# **Briefing Agenda**

- Background and Project Overview
  - Phase 1: Computational Thinking Score
  - Phase 2: Computational Thinking Score Validation
- Predictors and Criterion
- Phase 2 Results
- Closing



#### **Congressional Mandate**

- William M. (Mac) Thornberry National Defense Authorization Act (NDAA) for Fiscal Year 2021 (HR 6395), Section 594
  - Must assess six (6) computational thinking construct domains
    - Problem Decomposition
    - Abstraction
    - Pattern Recognition
    - Analytical Ability
    - Identifying Variables for Data Representation
    - Creating Algorithms and Solution Expressions
  - Must be available for operational use by October 1, 2024



# **Computational Thinking Construct Domains**

|    | <b>Construct Domains</b>                      | Descriptions                                                                                                                                                      |
|----|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Problem decomposition                         | <ul> <li>Break down a problem/task into smaller/easier components<br/>(e.g., describe a system as a sequence of processes)</li> </ul>                             |
| 2. | Abstraction                                   | <ul> <li>Focus on the most relevant information and ignore extraneous<br/>information to interpret meaning and reduce complexity of a<br/>problem/task</li> </ul> |
| 3. | Pattern recognition                           | <ul> <li>Identify and use repeated information or patterns to predict outcomes<br/>or determine actions for a problem/task</li> </ul>                             |
| 4. | Analytical ability                            | <ul> <li>Inspect, cleanse, transform, and model data with the goal of discovering<br/>useful information for a problem/task</li> </ul>                            |
| 5. | Identifying variables for data representation | <ul> <li>Recognize how parts of a solution may be reapplied to, or eliminated<br/>from, similar or unique problems/tasks</li> </ul>                               |
| 6. | Creating algorithms and solution expressions  | <ul> <li>Recognize and evaluate options against outcomes to simplify or<br/>automate processes for efficiency and resource utilization improvements</li> </ul>    |



#### **Where We Started**

- Existing measures of computational thinking were not viable
  - Those used for selection require specific programming language skills
  - Those used for skill acquisition are developed for the K–12 classroom environment, which are free on the internet (lack test security)
- NDAA-specified deadline of 01 October 2024 did not support creating a new, valid measure of computational thinking
- Belief that the Complex Reasoning Test (CR) already under development, and possibly some of the ASVAB subtests [e.g., Arithmetic Reasoning (AR), Assembling Objects (AO)] and other special tests [e.g., Cyber (CT), Coding Speed (CS), Mental Counters (MCt)] were likely assessing the computational thinking construct domains

#### **Project Overview**

Phase 1: Define Computational Thinking Score Equation

- Gather empirical & SME-estimated correlations
- Specify & analyze prediction models
- Generate, evaluate, finalize synthetic CompT score equations
- Submit software requirements & specifications

Phase 2: Verify Validity of Computational Thinking Scores

- Select computational thinking marker test
- Develop & implement data collection plan at MEPS
- Match shippers' ASVAB & CT scores to study data & clean
- Conduct analyses & summarize results



#### **Computational Thinking Score Equations**



Note: Scores are a weighted sum of CR, AR, and CT standard (T) scores with X = 50, std = 10. The AR, CR, and CT standard (T) scores are normed to the PAY97 sample.



#### Validation Data Collection

| Collected Data                                                                                                                                                                                                                                               | Matched Data                                                                                                                                                                                                                                                                                                | Cleaned Data                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>MEPS administered the Qualtrics data collection tool between 4/15 – 5/20</li> <li>Complex Reasoning (CR)</li> <li>Computational Thinking Assessment for Middle Schoolers (CTA-M)</li> <li>Background questions</li> <li>Shippers = 1,044</li> </ul> | <ul> <li>HumRRO sent DTAC<br/>participant IDs from<br/>Qualtrics on weekly basis</li> <li>DTAC used participant IDs<br/>and MEPS rosters to pull<br/>ASVAB and CT scores into<br/>a de-identified dataset</li> <li>HumRRO appended with<br/>responses on CR, CTA-M,<br/>and background questions</li> </ul> | <ul> <li>Removed any that showed a lack of motivation using:         <ul> <li>Two CR attention-check items</li> <li>Self-report question at end</li> <li>Time spent on CR and CTA-M (no more than 2 standard deviations below the mean for time spent)</li> <li>Checks for careless response patterns</li> <li>Checks for CR and CTA-M scores that were at or below chance</li> </ul> </li> <li>Removed any that left study early for transportation</li> </ul> |  |

Shippers = 922

Shippers = 722



## Sample by Demographic Group

| Gene   | Gender Race-Ethnicity Service <sup>3</sup> |                          |     |              |     |
|--------|--------------------------------------------|--------------------------|-----|--------------|-----|
| Female | 106                                        | Hispanic White (HW)      | 166 | Air Force    | 232 |
| Male   | 608                                        | Non-Hispanic Asian (NHA) | 35  | Army         | 22  |
| NA     | 8                                          | Non-Hispanic Black (NHB) | 172 | Coast Guard  | 0   |
|        |                                            | Non-Hispanic White (NHW) | 291 | Marine Corps | 214 |
|        |                                            | Other or NA              | 58  | Navy         | 238 |
|        |                                            |                          |     | Space Force  | 16  |
| Total  | 722                                        |                          | 722 |              | 722 |

\*Participation was limited to Shippers with a pre-enlistment CT score. Therefore, an equal distribution across Services was not expected given Services have different policies for administering CT to applicants.



#### Sample by Type of Service and Component

|             | Service |              |                |                 |      |                |       |
|-------------|---------|--------------|----------------|-----------------|------|----------------|-------|
| Component   | Army    | Air<br>Force | Coast<br>Guard | Marine<br>Corps | Navy | Space<br>Force | Total |
| Active Duty | 21      | 232          | 0              | 205             | 235  | 16             | 709   |
| Guard       | 1       | 0            | 0              | 9               | 3    | 0              | 13    |
| Reserve     | 0       | 0            | 0              | 0               | 0    | 0              | 0     |
| Total       | 22      | 232          | 0              | 214             | 238  | 16             | 722   |



# **Predictors and Criterion**



#### **Overview of Predictors**

- Components of operational equation-based Computational Thinking scores
  - AR
  - CT
  - CR
- Operational equation-based Computational Thinking scores derived from Phase 1 study
  - CompT\_AR = 2CR + AR
  - CompT\_CT = 2CR + CT
  - CompT\_ALL = 2 CR + AR + CT



## **Overview of Criterion**

- Computational Thinking Abilities Middle Grades Assessment (CTA-M)
  - Developed by Wiebe et al, 2019
  - Designed for classroom use with middle school students
- Consists of 23 items administered with a 45-minute time limit
  - 15 Computational Thinking Test (CTt) items (Gonzalez et al., 2015)
  - 8 Bebras items (2016 UK Bebras Challenge)
- Items map to two or three of the six construct domains based on consensus judgments by HumRRO team members
  - Problem Decomposition
  - Solving for Algorithms
  - Analytical Ability



## **Predictor and Criterion Analyses**

- Calculated score for each Shipper on:
  - CTA-M (criterion)
  - CR (predictor)
- Calculated the three CompT scores using the operational equations from Phase 1
  - CompT\_AR
  - CompT\_CT
  - CompT\_ALL
- Computed predictor and criterion descriptive statistics
- Computed predictor and criterion reliability estimates (except AR and CT\*)
- Computed predictor and criterion subgroup differences (except AR and CT\*)

\*For AR and CT, used existing estimates of reliability documented in psychometric checklists (Sinclair et al., 2003) and current estimates of subgroup differences for FY23 applicant data (Johnston-Fisher et al., 2024).

OFFICE OF PEOPLE ANALYTICS

# **Predictor and Criterion Descriptives**

| Variable  | Variable Type  | Mean  | Median | SD   | Min | Max |
|-----------|----------------|-------|--------|------|-----|-----|
| CTA-M     | Criterion      | 13.8  | 14.0   | 4.1  | 6   | 23  |
| AR        | Predictor      | 52.8  | 52.5   | 7.9  | 30  | 72  |
| СТ        | Predictor      | 51.6  | 52.0   | 8.9  | 22  | 76  |
| CR        | Predictor      | 55.0  | 57.0   | 8.1  | 35  | 67  |
| CompT_AR  | Equation Score | 162.8 | 167.0  | 20.8 | 103 | 202 |
| CompT_CT  | Equation Score | 161.5 | 164.0  | 20.5 | 104 | 202 |
| CompT_ALL | Equation Score | 214.3 | 217.0  | 25.6 | 141 | 271 |



## **Predictor and Criterion Reliabilities**

|           |                  | Reliability      |                            |  |  |
|-----------|------------------|------------------|----------------------------|--|--|
| Variable  | Type of Variable | Cronbach's Alpha | Mosier's Composite Formula |  |  |
| CTA-M     | Criterion        | 0.73             | —                          |  |  |
| AR*       | Predictor        | 0.89             | —                          |  |  |
| CT*       | Predictor        | 0.70             |                            |  |  |
| CR        | Predictor        | 0.82             | _                          |  |  |
| CompT_AR  | Equation Score   | —                | 0.88                       |  |  |
| CompT_CT  | Equation Score   | —                | 0.83                       |  |  |
| CompT_ALL | Equation Score   |                  | 0.88                       |  |  |

\*Cronbach's alpha obtained from Psychometrics Checklists as reported in Sinclair et al. (2023).



# **Predictor and Criterion Subgroup Differences**

|           | Type of Variable |      |         |        |          |                 |         |
|-----------|------------------|------|---------|--------|----------|-----------------|---------|
| Variable  |                  | M-F  | NHW-NHB | NHW-HW | NHW-NHA* |                 |         |
| CTA-M     | Criterion        | 0.28 | 0.54    | 0.19   | 0.35     |                 |         |
| ΔR        | Predictor        | 0.25 | 0.43    | 0 10   | -0.01    | Effect Size C   | ategory |
|           | riedicioi        | 0.23 | 0.45    | 0.10   | 0.01     | Less than Small | <0.20   |
| СТ        | Predictor        | 0.44 | 0.36    | 0.21   | 0.18     | Small           | 0.20 -  |
| CR        | Predictor        | 0.07 | 0.23    | 0.11   | -0.01    | Moderate        | 0.50 -  |
| CompT_AR  | Equation Score   | 0.15 | 0.34    | 0.12   | -0.01    |                 |         |
| CompT_CT  | Equation Score   | 0.25 | 0.34    | 0.18   | 0.08     |                 |         |
| CompT_ALL | Equation Score   | 0.28 | 0.41    | 0.17   | 0.06     |                 |         |

\*Sample size for Non-Hispanic Asian subgroup is too small to support interpretation of effect sizes.



< 0.20

0.20 - 0.49

0.50 - 0.79

# **Phase 2 Results**



#### **Data Analysis Plan**

- Calculate zero-order correlations between CTA-M and the three components (AR, CT, CR) in the three Computational Thinking score equations
  - Correct results for range restriction
  - Disattenuate results for criterion unreliability
- Calculate zero-order correlations between CTA-M and the three operational equation-based Computational Thinking scores developed in Phase 1
  - Correct results for range restriction
  - Disattenuate results for criterion unreliability
- Estimate empirical validity of non-negative least square (NNLS) regression equations using data from Phase 2 validation study
  - Correct results for range restriction
  - Disattenuate results for criterion unreliability
  - Adjust results for shrinkage

Conduct post-hoc analysis to recompute estimates using all 9 ASVAB subtests, CT, and CR

## **Correlation of Equation Component Tests with CTA-M**

| Equation       | Correlation with CTA-M |            |  |  |
|----------------|------------------------|------------|--|--|
| Component Test | Observed               | Corrected* |  |  |
| AR             | 0.48                   | 0.71       |  |  |
| СТ             | 0.40                   | 0.61       |  |  |
| CR             | 0.54                   | 0.73       |  |  |



#### **Correlation of Operational Equation-based Scores with CTA-M**

| Operational             | Correlation with CTA-M |            |  |  |  |
|-------------------------|------------------------|------------|--|--|--|
| Equation-Based<br>Score | Observed               | Corrected* |  |  |  |
| CompT_AR                | 0.61                   | 0.81       |  |  |  |
| CompT_CT                | 0.60                   | 0.80       |  |  |  |
| CompT_ALL               | 0.63                   | 0.83       |  |  |  |



#### **NNLS Regression Results by Operational Equation Scores**

| Regression                 | CompT_AR |            | CompT_CT |            | CompT_ALL |            |
|----------------------------|----------|------------|----------|------------|-----------|------------|
| Coefficient/<br>Multiple R | Observed | Corrected* | Observed | Corrected* | Observed  | Corrected* |
| AR                         | 0.15     | 0.18       | —        | —          | 0.11      | 0.13       |
| СТ                         | —        | —          | 0.12     | 0.15       | 0.09      | 0.09       |
| CR                         | 0.2      | 0.23       | 0.23     | 0.27       | 0.20      | 0.22       |
| Multiple R                 | 0.61     | 0.81       | 0.60     | 0.80       | 0.63      | 0.83       |
| R Shrinkage                | 0.61     | 0.81       | 0.60     | 0.80       | 0.63      | 0.83       |



# **Operational vs. NNLS Regression Validity Results**

|                                 | Validity Estimates                 |                                      |                                                                                   |            |  |  |
|---------------------------------|------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|------------|--|--|
| Computational<br>Thinking Score | Operational Equ<br>Phase 1 Synthet | ations Based on<br>ic Validity Study | NNLS Regression Equations Based<br>on Phase 2 Criterion-Related<br>Validity Study |            |  |  |
|                                 | Observed                           | Corrected*                           | Observed                                                                          | Corrected* |  |  |
| CompT_AR                        | 0.61                               | 0.81                                 | 0.61                                                                              | 0.81       |  |  |
| CompT_CT                        | 0.60                               | 0.80                                 | 0.60                                                                              | 0.80       |  |  |
| CompT_ALL                       | 0.63                               | 0.83                                 | 0.63                                                                              | 0.83       |  |  |



#### **Post-Hoc Validity Estimates with All ASVAB Subtests + CT + CR**

|                                         | Validity Estimates                     |                                         |                                                                                      |            |  |  |
|-----------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|------------|--|--|
| <b>Computational Thinking Score</b>     | Operationa<br>Based or<br>Synthetic Va | l Equations<br>Phase 1<br>alidity Study | NNLS Regression<br>Equations Based on Phase<br>2 Criterion-Related<br>Validity Study |            |  |  |
|                                         | Observed                               | Corrected*                              | Observed                                                                             | Corrected* |  |  |
| CompT_AR                                | 0.61                                   | 0.81                                    | 0.61                                                                                 | 0.81       |  |  |
| CompT_CT                                | 0.60                                   | 0.80                                    | 0.60                                                                                 | 0.80       |  |  |
| CompT_ALL                               | 0.63                                   | 0.83                                    | 0.63                                                                                 | 0.83       |  |  |
| Post-hoc = All ASVAB subtests + CT + CR |                                        |                                         | 0.67                                                                                 | 0.87       |  |  |

\*Results are corrected for multivariate range restriction and disattenuated for criterion unreliability. Yellow highlights identify post-hoc results to use for comparison to empirical results for computational thinking scores (same as slide 23).



#### **Results Conclusion**

- All three equation-based scores (CompT\_AR, CompT\_CT, CompT\_ALL) were strong predictors of the computation thinking construct, at least as it was operationalized in the Phase 2 validity study (i.e., CTA-M)
- Empirical weights for the score components (AR, CT, CR) derived from the Phase 2 validity study did not outperform the operational weights derived from the Phase 1 synthetic validity study
- Empirical validity estimates using all ASVAB subtests, CT, and CR resulted in relatively small increases (delta R = 0.04) in prediction in CTA-M scores







## **Software Updates (Completed)**

- CR is available for administration on the iCAT platform
- Applicant's completion of CR triggers calculation of CompT scores
  - Requires an AR and/or CT score within the last 2 years
  - Uses most recent AR and/or CT score when multiple records are found
  - Submits a blank score if an eligible AR and/or CT score is not found
- Saves each CompT score within the applicant's CR record
- MEPCOM receives all 4 scores: CR as well as 3 CompT scores









#### **Response to June 2024 DAC Recommendation**

- In process of preparing research designs for CR and CompT that DTAC may consider for future research
  - Applicant data containing one to three of the CompT scores is slowly accumulating, which will support additional analyses
    - Demographic information will likely be available for future subgroup differences research
    - Shippers' occupational training criteria may be useful for future research, should it be made available
    - ASVAB Training Relevance Survey results may be used to identify military occupations with high computational thinking relevance results to further research



#### **Questions to DAC**

Does the DAC have any suggestions for conducting additional research on fairness issues and/or validity?



### Acknowledgments

- DTAC team
  - Mary Pommerich, Matt Trippe, Liz Waterbury, Greg Manley, Ping Yin
- Phase 1 HumRRO team
  - Scott Oppler, Ted Diaz, Dan Putka, Sam Posnock, Kate Klein, Mike Ingerick, Matt Brown, Sergio Marquez, Sachi Phillips
- Phase 2 HumRRO team
  - Scott Oppler, Robert Wellman, Susan Rowe, Karla Castillo-Guerra, Furong Gao, Jeff Dahlke, Ted Diaz, Rae Powell, Kate Klein, Matt Brown, Evan Good, Cheryl Paullin, Sachi Phillips
- Many, many HumRRO software development and QA team members



# Thank you!

For more information please contact:

Kimberly Adams <u>kadams@humrro.org</u> 703.236.4303

